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Abstract The RS-stereoisomeric group T ;57 is examined to characterize quadruplets
of RS-stereoisomers based on a tetrahedral skeleton and found to be isomorphic to
the point group Oy, of order 48. The non-redundant set of subgroups (SSG) of T 57
is obtained by referring to the non-redundant SSG of Oy. The coset representation
for characterizing the orbit of the four positions of the tetrahedral skeleton is clari-
fied to be T 57(/C5,57), which is closely related to the O (/D34). According to the
unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and combinatorial
enumeration in chemistry. Springer, Berlin, 1991), the subdution of T ;5z7(/C5,57)
is examined so as to generate unit subduced cycle indices with chirality fittingness
(USCI-CFs). The fixed-point matrix method of the USCI approach is applied to the
USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion
with respect to the subgroups of T 7. After the subgroups of T ;5 are categorized
into types I-V, type-itemized enumeration of quadruplets is conducted to illustrate the
versatility of the stereoisogram approach.

Keywords Stereoisogram - RS-stereoisomers - RS-stereoisomeric groups -
Combinatorial enumeration - USCI approach

1 Introduction

The dichotomy between enantiomers and “diastereomers” [1] has scattered uncon-
scious but serious confusion caused by a verbal transmutation of the term “diastere-
omers”, as indicated from a chemical philological point of view [2]. This situation has
not changed yet, so that the dichotomy is widely adopted as one of the fundamental
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concepts in stereochemistry in most textbooks on organic stereochemistry [3—5] and
on organic chemistry [6—10].

Because the conventional term “diastereomers” has no mathematical basis so as to
contain rather indefinite connotation, the history of the Cahn, Ingold and Prelog (CIP)
system [11,12] has shown confusion over chirality and stereogenicity. In a parallel
way, the related method for giving pro- R/pro-S-descriptors [13] has shown confusion
over prochirality and prostereogenicity.

On the basis of the proligand-promolecule model [14], the concept of stereoiso-
grams has been proposed by the author (Fujita) to discuss stereogenicity and chirality
comprehensively [15]. Thereby, it has been clarified that the conventional stereogenic-
ity should be replaced by a more definite term, ‘RS-stereogenicity’ for the purpose of
comparing it with chirality [16]. Each stereoisogram consists of a quadruplet of RS-
stereoisomers, i.e., a reference promolecule, an enantiomer, an RS-diastereomer, and
a holantimer which is capable of comprehensive discussions on pseudoasymmetry,
RS-stereogenicity, chirality and the Cahn-Ingold-Prelog system of RS-nomenclature
[17-20] as well as on prochirality [21-25].

Such a quadruplet contained in a stereoisogram is governed by a newly-defined
RS-stereoisomeric group. The RS-stereoisomeric groups and related groups have been
constructed to discuss tetrahedral derivatives [16], allene derivatives [26,27], square-
planar complexes [28], ethylene derivatives [29], trigonal bipyramidal compounds
[30,31], and prismane derivatives [32,33]. The existence of five types of stereoiso-
grams has been proven on the basis of the existence of five types of subgroups of RS-
stereoisomeric groups [34]. The concept of correlation diagrams of stereoisograms
has been proposed for the purpose of characterizing stereoisomers [35-37]. Method-
ologies for investigating geometric and stereoisomeric features in stereochemistry
have been developed on the basis of the stereoisogram approach [38—40].

In addition to these reports on qualitative discussions, itemized enumeration of
quadruplets of RS-stereoisomers under the action of RS-stereoisomeric groups has
been reported [41], where the itemization is concerned with stereoisograms of Type
I-V. For the purpose of comprehensive discussions, it is desirable to investigate more
detailed itemization.

The author has recently reported symmetry-itemized enumeration of cubane deriv-
atives [42,43], where the USCI (unit-subduced-cycle-index) approach [44-46] is
applied to the Oy-point group. Because the Oj,-point group is isomorphic to the
RS-stereoisomeric group of tetrahedral compounds, the present report is devoted to
investigate more detailed itemization of quadruplets of RS-stereoisomers.

2 RS-stereoisomeric groups

Let us first consider a tetrahedral skeleton 1 to introduce the concept of stereoisograms
[15]. The skeleton 1 is controlled by a point group T4 (order 24), which can be extended
into the corresponding RS-stereoisomeric group T ;7 (order 48).

The RS-stereoisomeric group T ;57 has a normal subgroup T(order 12), which is
also a normal subgroup of T;. Hence, the T ;z7-group is decomposed into cosets as
follows:

@ Springer



510 J Math Chem (2014) 52:508-542

T;7=T+0T+6T+ 1T, M

which has been noted previously (Eq. 8 of [41]). Note that the point group T, for the
reference tetrahedral skeleton is decomposed as follows:

T;=T+0oT, (2)

where the symbol ¢ is a representative selected from the 12 reflection operations of T,.
The coset decomposition shown by Eq. 2 characterizes an enantiomeric relationship.

In addition, there appears a subgroup of order 24 for characterizing an RS-
diastereomeric relationship:

Ts =T+0T, 3

which has been noted previously (Eq. 44 of [41]). Note that the symbol & represents an
operation which has the same permutation as o but no alternation of chirality. Another
subgroup of order 24 characterizes a holantimeric relationship:

T; =T+ IT, 4)

which has been noted previously (Eq. 57 of [41]). Note that the symbol Trepresents
an operation which has the same permutation as / but alternation of chirality.

The operations of T ;7 are summarized in the T ;z7-columns of Table 1. The upper-
left part marked by the gray letter A collects the operations of the normal subgroup
T, the lower-left part marked by the gray letter B collects the operations of the coset
oT(= Ty — T) (cf. Eq. 2), the upper-right part marked by the gray letter C collects
the operations of the coset 0 T(= Tz — T) (cf. Eq. 3), and the lower-right part marked
by the gray letter D collects the operations of the coset IT(= T;—T) (cf. Eq. 4).
Hence, Eqs. 14 are alternatively represented in the form of sets of operations:

T -7 = {A.B, C,D} 5)
Ty, = {A, B} (6)
T; = (A, C) (7
T; = {A, D} 8)

T = {A}, 9

where the cosets A, B, C, and D (gray letters) contain the operations listed in the
T ;5 7-columns of Table 1. It should be noted that each operation of A corresponds to
an operation of D, where the correspondence is shown by the absence or presence of
a hat accent. In a similar way, each operation of B corresponds to an operation of C,
where the correspondence is shown by the absence or presence of a tilde accent.
Each of the four cosets shown in the right-hand side of Eq. 1 corresponds to
one component of a quadruplet of RS-stereoisomers, i.e., T to a reference skeleton,
oT(= Ty — T) to its enantiomeric skeleton, c T(= Tz — T) to its RS-diastercomeric
skeleton, and IT(= T7 — T) to its holantimeric skeleton. Thereby, a quadruplet of
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Table 1 Operations of T ;=7 and Coset Representation of T ;57(/C5,57) versus Operations of Op, and
Coset Representation of Oy, (/D3y4)

operation  operation Oy (/Dsg) or T 57(/Cy 57) || operation  operation  Op(/D3q) or T 57(/Cy 57)
g€0y g€ T 50 (product of cycles) g€0, 8€T 57 (product of cycles)
I I (H(2)(3)4) Che) Ga(1) (D)(24)(3)
Gy Gy (12)(34) Gy §d(6) (13)2)(4)
G G (14)(23) Ca () (14)(2)(3)
Cy3) Gy3) (13)(24) Cya) G4(2) 1@2)(34
Gy G (1)(234) Cys) G4(3) (1)(23)4)
C33) C33) (134)(3) Gy Gy(4) (12)(3)(4)
G G (143)(2) CZ(3) 54@ (1234)
Gy G4 (132)(4) Cy(3) Sie) (1432
C%(l) C§(1) (1)(243) Ci(,) ‘E?l(l) (1423)
Ca) G (123)(4) Caqr) Sa1) (1324)
G G (142)03) Cip2) Sie) (1243)
G Gy (134)(2) Clo Sa) (1342)
Oy(1) (1) (1)(24)(3) i T (1)(2)(3)(4)
Ga(6) G4(6) (13)(2)(4) Op(3) §2(l) (12)(34)
Cu(2) ) )(2)(34) Op(2) Co) (14)(23)
Ga(4) Ga(4) (12)(3)4) Oi(1) Co) (13)(24)
C4(3) G4(3) (1)(23)(4) S Gy (1)(234)
G4(s) O4(s) (14)(2)(3) 53 5(3) (142)(3)
Sa3) Sa3) (1234) S0 @(2) (143)(2)
S Sio) Ps32) o) G4 (123)(4)
San) Sy (1423) Sé1y 632<1) (1)(243)
Si) Si) (1324) Se4) Cyjap2 (132)(4)
Sia) Sie) (1243) S6(3) ) (124)(3)
S42) S42) (1342) S6(2) 6%(2) (134)(2)

RS-stereoisomers is selected as shown in Fig. 2a, where an appropriate representative
is selected according to each coset of Eq. 1, i.e.,

1 for I (eT) ~ (2B,
I for O'd(l)(e cT=T;—-T) ~(1)24(3),
3 for o404y (€oT=T-T) ~1)24@3), and

W

for T (eIT=T;—-T) ~ 1B @).

The resulting diagram (Fig. 2a) is here called a reference stereoisogram. Strictly speak-
ing, each skeleton collected in Fig. 2a corresponds to a representative of the corre-
sponding coset, 1e 1 (e T) for 1, oay (€ oT = Tg —T) for 1, oqy (e oT =

Tz — T) for 3, T (el IT=T; +—T) for 3. It should be noted that each representative
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Fig. 1 A reference tetrahedral

skeleton 1 and a reference cubic bd
skeleton 2 | 1
4 “‘C 2
e \‘
® 3
1

skeleton (1, 1, 3, or 3) is converted into its homomer under the action of T, where the
mode of numbering is altered according to T so as to result in the numbering due to
the respective coset.

The operations of the T; collected in the A- and B-part of Table 1 correspond
to respective products of cycles, which are contained in the coset representation
T4(/C3y) [16]. The products of cycles corresponding to the operations collected in
the C- and D-parts have been originally assigned by taking account of the corre-
spondence between o'T and o' T or between T and IT, where an overline is attached
or not [e.g., (1)(2)(3)(4) vs. (1)(2)(3)(4) and (1)(24)(3) vs. (1)(2 4)(3)] to each
product of cycles and a tilde (or hat) accent is attached or not to each opera-
tion [e.g., I vs. T and 04(1y Vs. d4(1yl. One of the main tasks of the present arti-
cle to redefine the products of cycles as the elements of the coset representation
Ty57(/C57)-

To demonstrate the correspondence between T, and Oy, let us next examine the
cubic skeleton 2 (Fig. 1), where we focus our attention on its four diagonals. The four
diagonals of 2 constructs an orbit governed by the coset representation Oy, (/D3y4) of
degree 4. The Oy, (/D3g)-orbit is restricted to Tz in accord with the subduction of the
coset representation:

O, (/D3g) | Ty =Tq(/C3yp). (10)

The Oy, (/D3q)-orbit of the four diagonals of 2 is not separated under this subduction
so as to retain one orbit governed by the coset representation T4 (/C3y).

On the other hand, the eight vertices of 2 is governed by the coset representation of
degree 8, i.e., 0, (/C3y), whichis reduced to T4 according to the following subduction:

01(/C30) | Ta = 2T4(/C30), (1)

where the eight vertices are separated into two T ;(/C3,)-orbits, as designated by solid
circles and open circles.

To discuss Eq. 10 (for the four diagonals) and Eq. 11 (for the eight vertices) com-
prehensively, the eight vertices are numbered from 1 to 4 and from 1 to 4, where
the two terminal vertices of each diagonal are designated by a number and its over-
lined counterpart, as shown in 2. When the four vertices marked by a solid circle
in 2 are considered to correspond to the four vertices of 1, the reference stereoiso-
gram shown in Fig. 2a can be converted into the reference stereoisogram shown in
Fig. 2b.
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(a) Stereoisogram for a tetrahedral skeleton (b) Stereoisogram for a cubic skeleton

Fig. 2 Reference stereoisograms for a tetrahedral skeleton (a) and for a cubic skeleton (b)

3 Point groups isomorphic to RS-stereoisomeric groups
3.1 Operations of T ;7 and those of Oy,

According to the definition of T 57, the Ty4-part of T ;57 is isomorphic to (the same
as) the Ty-part of Oy,. Let us first examine o4(1)(~ (1)(2 4)(3)), which is an element
of Ty — T (C T z7or C Op). As found in Fig. 3a, the operation oy4(1) converts 5 into
6 under the action of T ;z7 or Oy, where the operation oy(1) requires no bond cleavage
nor distortion. This means that this conversion retains the framework of the tetrahedral
skeleton (within the cubic skeleton). Note that any operation of a point group for a
skeleton retains the framework of the skeleton at issue.

As illustrated in Fig. 3b, the operation o1y (~ (1)(2 4)(3)), which is an element
of Tz — T (C T, z7), requires bond cleavage or distortion (e.g., pseudo-rotation)
during the conversion of § into 7. This means that this conversion does not retain the
framework of the tetrahedral skeleton (within the cubic skeleton), if we take account
of the RS-stereoisomeric group T ;7.

On the other hand, the operation C/2(1) (~ (1)(2 4)(3) for the four diagonals),
which is an element of O — T (C Op), converts 5 into 8, where the operation C’2(1)
requires no bond cleavage. This means that this conversion retains the framework of
the tetrahedral skeleton (within the cubic skeleton), if we take account of the point
group Op.

To clarify the isomorphism between T ;57 and Oy, the resulting skeletons 7 (with
bond cleavage or distortion) and 8 (without distortion) should be recognized to be
dual. The duality between 7 and 8 can be accomplished by considering a duality oper-
ation in which each solid circle and each open circle are exchanged and each number
and its overlined counterpart are exchanged. Thereby, the correspondence between
Gay (~ (1)(2 4)(3)) and C/2(1) (~ (1)(2 4)(3)) is recognized to be a pair of dual
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(a) A common element for Oy, and T ;57

Ou(1) € Ta =T (C Oy, T57)
(1(24)(3)

6&1(1) S Tg. -T (C T
(1)(24)(3)

47)

dual

Chy) EO—T (C Op)
(1H(24)(3)

Fig. 3 Correspondence between elements of point groups and those RS-stereoisomeric groups. a An
element o(q) is contained in Ty — T, which is a subgroup for Op, and T ;57 b An element o4(y) is
contained in Tz — T, which is a subgroup of an RS-stereoisomeric group T ;= 7; while C/Z(l) is contained
in O — T, which is a subgroup of a point group Oy,

elements to assure the isomorphism between T ;57 and Oy, as shown in Fig. 3b. The
permutation (1)(2 4)(3) for 64(1) (€ T 57) is apparently identical with the permuta-
tion (1)(2 4)(3) for C/2(1) (€ Op), although their objects (vertices vs. diagonals) are
different.

Let us second examine Cy(1y (~ (1 2)(3 4)), which is an operation contained in T.
Note that T is a subgroup of T4, which is a common subgroup of Tz or Oj,. As
found in Fig. 4a, the conversion of 5 into 9 requires no bond cleavage so as to retain
the framework of the tetrahedral skeleton (within the cubic skeleton).

As found in Fig. 4b, the operation 62(1) (~ (12)(34)), which is contained in
T;—T(C T z7), converts § into 10, where bond cleavage is necessary in the process
of exchanging 1 and 1, etc. (cf. 9 — 10).

On the other hand, the operation oy3) (~ (12)(34)), which is contained in
Ty, — T (C Op,), converts 5 into 11 without bond cleavage.

To clarify the isomorphism between T 7 and Oy, 10 and 11 are recognized to
be dual in terms of a duality operation in which each solid circle and each open
circle are exchanged and each number and its overlined counterpart are exchanged. It
follows that 62(1) (~ (12)(34)) and op3) (~ (1 2)(3 4)) are recognized to be dual
elements so as to assure the isomorphism between T ;5 7and Oy, as shown in in Fig. 4b.
The permutation (1 2)(3 4) for 62(1) (e T, z7) and the permutation (12)(34) for
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(a) A common element for O, and T 57

C2(1> eT (C T, C Oh’TdS'lA)
(12)(34)

Cony €T;—T(CT
(12)(34)

d&i)

dual

Fig. 4 Correspondence between elements of point groups and those RS-stereoisomeric groups. a An
element Cy(p) is contained in T, which is a subgroup for Oy and T ;57 b An element Cy(y) is contained
in T’A - T, which is a subgrpup of an RS-stereoisomeric group T ;=7; while o,(3) is contained in T, — T,
which is a subgroup of a point group Oy,

on(3) (€ Oy) are apparently identical with each other, although their objects (vertices
vs. diagonals) are different.

Let us third examine the identity element / (~ (1)(2)(3)(4)), which is an operation
contained in T. Note that T is a subgroup of T;, which is a common subgroup of
T, 57 or Oy. As found in Fig. 5a, the identity conversion of 5 into 5 requires no bond
cleavage so as to retain the framework of the tetrahedral skeleton (within the cubic
skeleton).

As found in Fig. 5b, the operation T(N (1)(2)(3)(4)), which is contained in
T;— T (C T z7) converts 5 into 12, where bond cleavage is necessary in the process
of exchanging 1 and 1 and so on. The exchange between 1 and 1 etc. serves as a
basis of the exchange between a proligand (e.g., p) and a counterpart proligand of the
opposite chirality (e.g., p), which requires bond cleavage.

On the other hand, the inversion operation i (~ (1)(2)(3)(4)), which is contained
in T, — T (C Oy), converts 5 into 13 without bond cleavage.

To clarify the isomorphism between T ;7 and Oy, 12 and 13 are recognized to be
dual in terms of a duality operation in which each solid circle and each open circle are
exchanged and each number and its overlined counterpart are exchanged. It follows
that IA(N (H2)B)4)) and i (~ (1)(2)(3)(4)) are recognized to be dual elements
so as to assure the isomorphism between T 57 and Oy, as shown in in Fig. 5b. The
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(a) A common element for O and T T

I1€T (CTyCOT,s)
(D(2)(3)(4)

TeT;—T(CT,5)
(H2)3)4)

dual

ieT,—T (C Oh)
(D(2)(3)(4)

Fig. 5 Correspondence between elements of point groups and those RS-stereoisomeric groups. a An
element Cy(p) is contained in T, which is a subgroup for Oy and T ;57 b An element Cy(y) is contained
in T’A - T, which is a subgrpup of an RS-stereoisomeric group T ;=7; while o,(3) is contained in T, — T,
which is a subgroup of a point group Oy,

permutation (1)(2)(3)(4) for T(e T 57) and the permutation (1)(2)(3)(4) for the
inversion operation i (€ Qp) are apparently identical with each other, although their
objects (vertices vs. diagonals) are different.

Similar examinations are conducted with respect to the remaining operations of
T ;57 and those of the point group Oy,. The resulting correspondence is summarized
in Table 1. The subgroups of T ;7 shown by Eqs. 5-9 correspond to the following
subgroups of Oy (A, B, C, D are gray letters):

0, = {A,B,C,D} (12)
T, = {A, B} (13)
0 ={A,C} (14)
T, = {A, D} (15)
T = {Al. (16)

The comparison between Eqs. 5-9 and Eqs. 12-16 results in the following set of
isomorphism: Oy, = T 57, Tq = T4 (identical), O = Tz, and T, = T;,and T =T
(identical). It follows that Eqgs. 1-4 for the RS-stereoisomeric group T ;57 correspond
respectively to the coset decompositions for the point group Op,:
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Oy =T+ oqyT + CyT+iT (17)
Ts =T+ oqhT (18)

O =T+ CyT (19)
Ty = T+iT (20)

3.2 Symmetry elements of T ;z7 and those of O,

Symmetry elements of the point group Oy, are shown in Fig. 6, which is a modification
of Fig. 2.2 of [46]. Note that the diagram of the inversion center is omitted and that
the numbering of the vertices are changed from the original numbering [46]. The
top row depicts rotation or rotoreflection axes: 14a—14c; and the bottom row depicts
mirror planes: 14d-14g. For example, the Cy4(3)-axis in 14a generates the operations
Cy3), Co3y (= Cfm), and C2(3), where it implies the presence of the Cy(3)-axis. On

the other hand, the S4(3)-axis in 14a generates the operations S43y, C2(3) (= S§<3))’

and = 52(3)’ where it also implies the presence of the Cy(3)-axis.

As summarized in Table 1, Figs. 3, 4 and 5 provide the correspondence between
the operations of the point group Oy, and those of the RS-stereoisomeric group T ;57
Thereby, symmetry elements of the RS-stereoisomeric group T 57 are obtained as
shown in Fig. 7, which corresponds to Fig. 6. The symmetry elements without a
tilde or hat accent in Fig. 7 depict rotation or rotoreflection axes, which construct the
point group T4 (C T;57). The symmetry elements with a tilde or hat accent construct
the coset T 7 — Ty (ie., {C, D} as gray letters). For example, the S4(3y-axis in

Ca3)s
C4(3),S‘4(Zs) C3(3)> Se(3)
3 3 2 = C31)> Se(1)
Ty Ca), 3
# Cy2), S
T G S .
C3(4)> Se(a
IR 728 S / /™ Caays Sea)
Cary» Sa) C32)- Se(2)
14a 14b
z z
) ; X0 Iue Oy 9a2 N TC
s (T i N4l e
Gh(l) 1’17”7 1]4 Y 1 4 72 4 4 1’ 4 y
7 On(3) / 4 /
2 2 2 2
x/ Oh(2) : ’ x/ ’ :
14d 14e 14f l4g

Fig. 6 Symmetry elements of the point group Oy, for characterizing a cubane skeleton [46]. The top row
depicts rotation or rotoreflection axes: 14a—14c; and the bottom row depicts mirror planes: 14d—14g
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Ca3)s
S43)- Sag3)
AZ
3 2
4 l <
Tl £
P I
Caqry Sa) Ci2). Caa)
15a 15b 15¢
Ve Zz
3 : ) | Ga(e) Ga(4) Ga(2) 0d(s)
2 3 ) 3 2 3 2
| R O,
3 . 4 1. 4 1 d@; ]
A y y
Cops) A= ét 7 4 7 4 ) 4
7 Ca1) / 4 /
2 = 3 2 3 2 3 2 3
x/ Ca2) x/
15d 15e 15f 15g

Fig.7 Symmetry elements of the RS-stereoisomeric group T ;=7 for characterizing a cubane skeleton. The
symmetry elements without a tilde or hat accent depict rotation or rotoreflection axes, which construct the
point group Ty (C T ;5 7). The symmetry elements with a tilde or hat accent construct the coset T jz7— Ty

15a generates the operations §4(3), Cr3) (= §£(3))’ and §2(3), where it implies the
presence of the Cy(3)-axis. On the other hand, the S4(3)-axis for the RS-stereoisomeric
group T ;57 is identical with the S4(3)-axis for the point group Oy, which generates
the operations S4(3), Ca3)(= 32(3))’ and = Sﬁ’@).

3.3 Factor groups derived from T 57 and Oy,

Because the subgroup T is a normal subgroup of T ;57, Eq. 1 provides a factor group:
T,;7/T={T,oT,cT, 1T}, (21)

As proved generally [34], a factor group generated from an RS-stereoisomeric group is

isomorphic to the point group Cs, or the Klein four-group, so that it has five subgroups

only, just as the point group Ca, or the Klein four-group has subgroups only. The five
subgroups are named Type I-V as follows:

Type IV {T,oT,5T, 1T} (22)
Type V.  {T,oT} (23)
Typell {T,5T} (24)
Typel (T, 1T} (25)
Typelll  {T} (26)
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These five types create stereoisograms of five types [34]. They are related to the coset
decompositions represented by Eqs. 1-4 or by Eqgs. 5-8 (along with Eq. 9).
In a parallel way, Eq. 17 provides another factor group:

04/T = (T, 04T, Cy T.iT) 27)

which is isomorphic to the point group C,, or the Klein four-group. The factor group
0,,/T has five subgroups only. They are related to the coset decompositions repre-
sented by Egs. 17-20 or by Eqgs. 12—15 (along with Eq. 16).

3.4 Subgroups of T ;57 and Those of Oy,

The point group Oy, has 33 subgroups up to conjugacy, which have been discussed in
detail in terms of a non-redundant set of subgroups (SSG) [47]:

123/45/67891011/12 l} 1;} 15 1/6
SSGo, = 1C1, Co, G, Gy, C, C;, C3, Cy, 84, D, Dy, Cyy, Gy, Gy, Cop, Gy,

17 18 19 20 21 22 23 2/4 25 2/6 27 28 29
D3, C3y, C3;, Dy, Cay, Capy, Doy, D5y, Dopy, Dy, T, D3g, Dy,

30 31 32 33]

0, Ty, Ty, Oy (28)

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 33 are attached to the respec-
tive subgroups. In accord with Eqs. 17-20 (and the trivial case of T), the subgroups
collected in Eq. 28 are categorized to give five categories, as shown in Fig. 8:

. five subgroups of T,

. six subgroups of T; except those of T,

. six subgroups of O except those of T,

. seven subgroups of T, except those of T, and

. nine subgroups of Oy, except those of T, Ty, O, and T},.

| O R S

Because the RS-stereoisomeric group T ;s is isomorphic to the point group Oy,
there appear 33 subgroups of T 7, which are isomorphic to those of Oy, as summa-
rized in Fig. 8. By referring to the correspondence between the operations of T ;7 and
those of O, (Table 1), the respective subgroups of T ;57 are constructed as follows:

1. The five subgroups of the point group T are also the subgroups of the RS-
stereoisomeric group T ,=7. The symbols of the point groups are also used to
designate the subgroups of the RS-stereoisomeric group. See Fig. 8. These RS-
stereoisomeric groups are categorized to type III.

2. The six subgroups of Ty (except those of T) are the subgroups of the RS-
stereoisomeric group T 57 at the same time. The symbols of the point groups
are also used to designate the subgroups of the RS-stereoisomeric group except
that the symbols C; and C/Zv in Oy, are changed into Cy and Cy, in T ;57 because
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c Oy Subgroups
C Td&i (Type)
1 2 7 10 27
T CC G D T
TAD |C, C; C3 D, T
5 9 13 18 23 32
Ty C; Sy C,, C3 Dy Ty
T, (V) C; Sy Cy G Dy T,
3 8 11 17 20 30
0 c C, D, Dy D, 0
T (II) Cs S; Cos Ci5 Dys Ts
4 6 12 15 19 25 31
T, C G Cy Gy G Dy, T,
14 16 21 22 24 26 28 29 33
(08 ¢, Gy, Cy Cy D), D), D3y Dy, (08
T 57 AV) Cs Cor Sis Sir Siss Cosr Cavar Dousi Taar
order 1] 2 [3] 4 Je] 8 | 12 ] 16 [24] 48

Fig. 8 Subgroups of the point group Oy and the corresponding isomorphic subgroups of the RS-
stereoisomeric group T ;7. For the convenience of cross reference to Egs. 28 and 51, sequential numbers
from 1 to 33 are attached to the respective subgroups. The symbols for the subgroups of T are essentially
common in both of the two isomorphic series. The symbol for each subgroup of T (II) contains a tilde
accent. The symbol for each subgroup of T (I) contains a hat accent. The symbol for each subgroup of
T 57 (V) contains both a tilde and a hat accent

of no confusion. See Fig. 8. These RS-stereoisomeric groups are categorized to

type V.

of Tz (=T).

@)
Q

83

Cys
Css
Doz

T

Q

= {1,041y}

= {1, S433), Ca23), §2(3)}
={I, C2(3), Ga(1), Od(6)}
={I, C3), C§(1>, Gd(1)» 0d(2)» 0d(3)}

= {1, Ca1), C22)> C23), Ga(1)» Bd(6)» S4(3)» 52(3)}

o C

()

T

o Cy)
o Cy)

(cf.Eq. 7)

> Cy)

O Dy)

The six subgroups of O (except those of T) correspond to the following subgroups

(29)
(30)
€1V}
(32)
(33)
(34)

The symbols of the subgroups are selected by designating a common subgroup
to Ty (denoted in a pair of parentheses) which is attached by a suffix to refer
to an uncommon operation. Each of the symbols contains a tilde accent in its
suffix. For example, the symbol Cy5 stems from the largest subgroup C; (as a
common subgroup to Ty) and from an uncommon operation G4(1). The symbol
S; is adopted for the purpose of avoiding the confusion with Coz. These RS-
stereoisomeric groups are categorized to type II.
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4. The seven subgroups of T}, (except those of T) correspond to the following sub-
groups of T (—T).

Cs =1{I,Co3}  (OC) (35)
Cr={I.I} (©C) (36)
Czs = {1, C23). Caq1). Ca)} (D C2) (37)
Coi = {1, C23), Ca3y, I} (D C2) (38)
Cir = {1, C3q1), C§(1>, 1, Gy, 63(1)} (O C3) (39

D,7 = {1, Cy1), C2(2), Co(3), 1, 52(1), 62(2), 62(3)} (> Dy) (40)
T;={A.D} (OT) (cf.Eq.9) (41)

The suffix & is used to refer to 62(1) and so on. The names of the subgroups are
characterized by the symbols with a hat accent. These RS-stereoisomeric groups
are categorized to type I.

5. The nine subgroups of Oy, (except those of T, T;, O, and T},) correspond to the
following subgroups of T ;57

Css5 = {1, 0a41), 62(3), oae)) (O Cy) (42)
Cy57 = 1,5, oay) (D Cy) 43)
Si> = {1, S1i3), C23), §2(3), Caty» C202), 9achys 9a6)) (D S7, Caw)  (44)
Si7 = {1, Sa3), Ca3), 3;2(3), T, Ca3), S43), 52(3)} (D 83,84) (45)

Sizz = {1, Cag3), Ga(1)» Gace)y» Ca(1y» Ca2)» Sac3), 52(3)} (O 8y) (46)

C,57 =11, C23), 0a(1), 0aee), I, C23), 0ac1), oa)} (O Cay) 47)
Cy 57 =11, C3q1), Cim, Td(ly, 0d2)> 0d(3)>
1, C31y, @(1), od(1), 0d2), 0d3)} (D Cay) (48)

Dys57 = (1. 21y, C22). C23): Gu1): 3a(©)» S43)> Sic3)»
I, 62(1% 62(2), 52(3)7 Od(1y, Od(6)s S4(3)s 52(3)} (O D) (49
Ti;7=1{AB,C,D} (OTy) (cf.Eq.5) (50)

The suffix o is used to refer to 62( 1) and so on. The symbol Sz is based on the
subgroup S3 in place of Cy,. The symbol Sz7-is based on the subgroup Sz in place
of S4. The names of the subgroups are characterized by the symbols with both a
hat accent and a tilde accent. These RS-stereoisomeric groups are categorized to
type IV.
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According to the data of Fig. 8, Eq. 28 for the point group Oy, is converted into a
non-redundant SSG for T ;57

2 3 4 5 6 7 8 9 10 11 12 13 14 15

SSGTI = Clv CZ» Co‘v Co‘v CSv C[s C%v S4s S4s D27 CZm C2O‘7 szv CSO‘O‘? C2]s
16 17 18 19 20 21 22 23 24 26 28
CSEI’ C3O‘1 C3vs C3[» D2O‘7 S4(77 S4]1 D2da S4O'a'7 D2[1 C2UU[1 T C3U(TI’

29 30 31 32 33
] (5D

Dyi57 T, T, Ta, Tysry

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 33 are attached to the respective
subgroups.

4 Subduction of coset representations
4.1 Coset representations of T ;57

According to the USCI approach [44], each subgroup G; appearing in the SSGo, for
the point group Oy, (Eq. 28) corresponds to a coset representation Oy, (/G;) of degree
|O11/1G;|. For example, the four diagonals of the cubane skeleton 2 construct an
orbit, which is governed by the coset representation Oy, (/D3g4) of degree |0y, |/|D34|
(= 48/12 = 4). The permutations (products of cycles) of Oy (/D3,4) are collected
in Table 1. Note that an overlined permutation (product of cycles) is assigned to a
(roto)reflection operation of Qy,.

On the same line, each subgroup éi appearing in the SSGr _~ for the T ;7 (Eq.
51) corresponds to a coset representation T ;z7(/ Ci) of degree |T 571/ |(},~ |. Because
T ;57 is isomorphic to Oy, the coset representation T ;z7(/ G,) consists of an identical
set of products of cycles to that of Oy (/G;), if the subgroup Gi (C T 57) is selected
to be isomorphic to G; (C Op).

For example, the four vertices of the tetrahedral skeleton 1 construct an orbit, which
is governed by the coset representation T z7(/C5,57) of degree |T ;571/|C,57] (=
48/12 = 4). The coset representation T 57(/Cs,57) consists of the same set of
products of cycles as Oy (/D34) (Table 1), where C; z7(C T, 57) is isomorphic to
D34 (C Op) (cf. Eq. 48).

4.2 Mark table and inverse mark table of T ;=7

The coset representations Oy, (/G;) (G; € SSGo,) generate the corresponding mark
table Mo, , as reported in Table 1 of [47] and Table 1 of [42]. Because the RS-
stereoisomeric group T 7 is isomorphic to the point group Oy, the mark table of
T ;57 represented by the symbol Mt - can be equalized to the mark table Mo, as a
33 x 33 matrix:

Mr,,; = Mo, (52)
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if the SSGt T (Eq. 51) is selected to be related to the SSGg,, (Eq. 28). Hence, the
inverse mark table is calculated to be a 33 x 33 matrix:

Myl =Ml =
M 0 0 0 o o o 0o o0 o 0o 0 0o 0 o 0 0o o o0 0o 0 0o 0 0o 0 0 0 000 0 0 0
Weys 0 0o 0 o 0 o 0 o0 o0 0o 0 o 0 0o 0 0o 0 0 0 0 0o 0 0o 0 0o 000 0o 0 o
s 0 14 0 0 0 o o o o o0 o o0 o 0 o 0 o 0o o0 o 0 o 0 o 0 o 000 0o 0 o
60 0 s 0 o o o o o o0 o o0 0o 0 o 0 0o 0 0 0o 0 0o 0 0o 0 0o 000 0o 0 o
0 0 o 14 0 0 o 0o o0 o0 0o o0 0o 0 0o 0 0o 0 0 0 0 0o 0 0o 0 0o 000 0o 0 o
0 0 0 0 Mo o0 o o o0 o o0 o 0 o 0 o o o0 o 0 o 0 o 0 o 000 0o 0 o
/20 0 o 0 o 14 0 0o o0 o0 o o0 0o 0 o 0 0o 0 0 0o 0 0o 0 0o 0 0o 00 0 0o 0 o
0 o0 0 0 o 0 A0 o0 0 0o o0 0o o0 0o 0 0o 0 0 0 0 0o 0 0o 0 0o 00 0 0o 0 o
o -s0 0 o 0 o 0 4 0 0 o o o0 0o o0 o 0 o 0 o 0o o0 0o o0 0o 0 00 0 0 0 o0
24 <50 0 0 0 o o o0 2 0 0 o 0 o 0 o0 o o0 0o 0 0o 0 0 0 0 0 000 0 0 0
& sS40 0 0 0 0 0 o & 0 0o 0 o 0 o0 0o o 0o 0 0o 0 0o 0 0 0 000 0 0 0
W <50 —A0 0 0 0 0 o o 1A 0 0 o 0 o0 0o o 0o 0 o 0 o 0 o0 0 000 0 0 0
5 <50 0 —i40 0 0 0 o 0o 0 4 0 o 0 o o 0o 0o 0 0o 0 0o 0 0 0 00 0 0 0 0
W40 -y -4 -S40 0 0 0 o 0 0 o 12 0 0 o0 0o o 0o 0 0o 0 0o 0 0 0 000 0 0 0
W cs0 s 0 -s0 0 0 o 0 0 o 0 4 0 o0 0o o0 0o 0 0o 0 o 0 0 0 000 0 0 0
40 —ys0 -4 -a0 0 0 o 0 0 o 0 o 12 0 0o o 0o 0 0o 0 0o 0 0 0 000 0 0 0
=l o <20 0 0 cpo 0 0 0 0 o o o o 42 0 o 0 o 0 0o o o0 0o 0 00 0 0 0 o0
W0 0 0 Si20 -0 0 0 0 0 o 0 0 0 o 12 0 0o 0 0o 0 o 0 0 0 000 0 0 0
2 0 0 0 o0 -6 -0 0 o 0o 0 o 0 o 0 o o 12 0 0 0o 0 0o 0 0 0 00 0 0 0 0
0 4 0 0 0 0 0 A0 -l g0 0 0 0 0 0o 0 0o 12 0 0 o0 0o 0 0o 0 0 0 0 0 0 o0
O 4 0 0 0 0 0 A0 0 0 -A-E0 0 0 o 0 0 0 2 0 o0 0o o0 0o 0 0 0 0 0 0 o0
O 4 0 0 0 0 0 A0 0 0 0 0 40 0 0 0o 0 o 12 0 0o 0 0o 0 0 0 0 0 0 o0
0 174 0 0 0 0 o o —1/4 —1/4 0 0 —1/4 0 0 0 o o 0 0 0 o 1720 0 0 0 0o 0 0 0 0 0
0 A0 0 0 0 0 0 1o S0 0 0 0 0 0 0 0 0 0 0 12 0 0o 0o 00 0 0o 0 o
“6 14 0 4 0 20 0 0 -20 -0 0 -0 0 o 0 0 0 o0 0o 0 16 0 0o 0 0 0 0o 0 o
Sz A 12 A 12 A 0 0 0 0 —I/A0 -l -2 <4 -20 0 0 0 0 0 0o 0 0o 12 0 0 0 0 0o 0 o
W2 0 0 0 0 0 -0 0 20 0 0 0 0 0 0 0 o0 0o 0 0o 0 0o 0 0 40 00 0 0 0
Sz 0 2 0 a2 oz a2z 0 0 0 0 0 0 0 0 - S22 -zo 0 0 0 0 0 0 0 1 0 0 o o o
0 -1 0 0 0 0 0 12 02 12 42 02 42 0 42 0 0 0 0 -2 -2 <12 -2 <12 -2 S120 0 1 0 0 0 0
W0 12 0 0 0 4 0 0 & 0 0 0 0 0 0 <20 0 -20 0 0 0 0 0 40 0 12 0 0 0
2o 0 0 0 Y6 14 0 0 2 0 0 0 0 0 0 0o 0o —lz0o 0 0 0 0 60 40 0 0 12 0 o
40 0 0 12 0 1 0 0 44 0 0 0 0 0 0 0 -20 0 0 0 20 0 0 40 0 0 0o 12 0
20 S20 0 Si2 Sz -i200 0 S2 0 0 0 0 0 L a2 12 12 12 0 0 12 0 12 0 2 o1 o1 -l2 12 -2

(53)

which has been previously reported (Table 2 of [47] and Table 2 of [42]).
By obeying the procedure of the USCI approach [44], the four vertices of the
tetrahedral skeleton 1 are examined under the respective subgroups of T ;57 to give a
fixed-point vector:

FPV; =4,0,2,0,2,4,1,0,0,0,0,0,0,0,0,2,1, 1, 1, 0,
0,0,0,0,0,0,0,1,0,0,0,0,0) (54)

which is equal to the mark appearing in the T 57(/C5,57)-row of the mark table of
T ;57 This is equal to the mark appearing in the Oy, (/D34)-row of the mark table of
Oy, (Table 1 of [47] and Table 1 of [42]).

To testify that the orbit for the four vertices of the tetrahedral skeleton 1 is governed
by T ;57(/C5,57)-row, the fixed-point vector (Eq. 54) is multiplied by the inverse mark
table My ' (= M(;l) shown in Eq. 4.2, so as to give a vector:

dol h
FPV| x Mfdl~f =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0). (55)

This vector shows the multiplicities of coset representations, so that the value 1 at the
28th position indicates the presence of one coset representation T ;z7(/C5,57), which
corresponds to Oy, (/D3g).
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4.3 Subduction and unit subduced cycle indices
4.3.1 Subduction to subgroups of Ty related to types Il and V

According to the USCI approach [44], each coset representation Oy, (/G;) is subduced
into a subgroup G ;. For example, the coset representation Oy, (/D3,) is subduced into
its subgroup G; (€ SSGg,), as collected in the subduction-column of Table 2. The
subduction Oy (/D34) | G; is represented by the sum of coset representations of the
subgroup G/, e.g.,

0y (/D3a) | C; = C{(/C1) 4 2C5(/Cy) (56)

which appears in the 5th row of Table 2.

According to the formulation of the USCI approach [44], the mark table and its
inverse are further used for the subduction of coset representations: O (/G;) | G;
(forG;, G; € SSGo,). For example, the subduction of O, (/D3y) into C} is conducted
by selecting the values for SSGCQ = {Cl, C/Y} from the Oy, (/D34)-row of the mark
table (i.e., Eq. 54). Thereby, we obtain the corresponding mark:

Mo, (/pspic; = (4.2), (57)

which can be regarded as an FPV for the subgroup C,. Because the mark table of C;,
and its inverse are obtained as follows:

C; C;
_Cycn (2 0 a_(30
Me=cgep 1 1) Ma=\"11) (58)
the following multiplication:
Mo, (e, x Mg = (1.2) (59)

gives the multiplicities of C;(/C;) and C,(/C}), as shown in the 5th row of Table 2.
This result confirms the subduction represented by Eq. 56. This procedure is repeated
to cover all the subgroups contained in SSGq,. Thereby, we obtain the subduction
column of Table 2.

Because each coset representation generated by the subduction is characterized by
a sphericity index (SI), the whole result of the subduction is characterized by a product
of SIs, which is called a unit subduced cycle index with chirality fittingness (USCI-CF)
according to Def. 9.3 of [44]. For example, Eq. 56 (or Eq. 59) means that the subduction
01, (/D3g) | C, is characterized by a USCI-CF, alzcz. Similarly, the data collected in
the subduction column of Table 2 provide USCI-CFs collected in the USCI-CF column
of the same table. When sphericities are not taken into consideration, USCIs (without
chirality fittingness) are obtained by putting sy = ag = bgs = ¢4 according to Def.
9.2 of [44], as collected in the USCI column of Table 2. By obeying the procedure
exemplified by Table 2, we are able to obtain the full list of the USCI-CFs of Oy,
which is shown in Tables 4 and 5 of [42].
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Table 2 Subduction of Oy (/D34)

Subgroup  Subduction USCI-CF  USCI  GEM (cf. Eq. 48 of [42])
(i Gj) (Op/D3q | Gj) t(o]%]al) c(}ll\i]r&])) ?chi(za}I)
J j j

1 C 4C; (/C)) bt st 1/48 1/48 0
2 G 2C, (/Cy) b3 53 1/16 1/16 0
3G, C, (/Cp) +2C, (/Ch) biby sty 18 1/8 0
4 G 2C5 (/C) A 53 1/16 —1/16 18
5 C C} (/C)+2C, (/Cy) aler sty 18 —1/8 1/4
6 G 4C; (/C)) af af 1/48 —1/48 1724
7 C3 C3 (/C1) +C3 (/C3) b1b3 5183 1/6 1/6 0
8 Cy4 C4 (/C)) by 54 1/8 1/8 0
9 S S4(/C1) c4 54 1/8 —1/8 1/4
10 D, D (/C1) by 54 0 0 0
11 D, D), (/Ch)+ D, (/C5) b3 53 0 0 0
12 Cyy Cay (/C1) 4 54 0 0 0
13 ¢, C), (/Cs) + Ch, (/CY) a3 53 0 0 0
14y, cl (/Ch) +Ch (/Ch) acy 53 0 0 0
15 Cy 2Co (/C;) a3 53 0 0 0
16 ¢, Ch, (/Ci) +2Ch, (/CY,)  diar sts) 0 0 0
17 D3 D3 (/C2) + D3 (/D3) bybs sis3 0 0 0
18 C3y C3y (/Cs) + C3y (/C3p) apaz sis3 0 0 0
19 Cy; Cs; (/Cj) + C3; (/C3;) ayaz 5183 1/6 —1/6 1/3
20 Dy Dy (/C%) by 54 0 0 0
21 Cygy Cyy (/Cg) aq S4 0 0 0
22 Cyy Cyp (/Cy) a4 4 0 0 0
23 Dy Doy (/Cy) ag S4 0 0 0
24 D)y, D), (/Ch) ¢4 54 0 0 0
25 Dy D2y, (/C) ay 54 0 0 0
26 DY, Dy, (/Chy) + D, (/C,) a3 57 0 0 0
27 T T (/C3) by s4 0 0 0
28 D3y D3g (/Chy,) +D3q (/D3g)  aras s1s3 0 0 0
29 Dy D4y (/C/Zh) as S4 0 0 0
30 O 0 (/D3) by 54 0 0 0
31 Ty Ty (/C3i) ay 54 0 0 0
32 Ty Tq (/C3y) ag S4 0 0 0
33 0y Oy, (/D3g) ag S4 0 0 0

Because the subgroup C; of Oy, is identical with the subgroup C, of T 57, the

subduction shown by Eq. 56 is written as follows:

T 57(/C351) 1 Cs = Cs(/Ci) + 2C5(/Cy)

(60)
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which appears in the Sth row of Table 3. Hence the subduction T jz7(/C5,57) | Cy is
characterized by a USCI-CF, alzcz.

The subductions to the subgroups collected in the T;(V)-row of Fig. 8 (i.e.,
Cs, S4, Cyy, C3y, Doy, and Ty) and those collected in the T(II)-row (i.e., Cy, Cp, C3,
Dy, and T) can be discussed in a parallel way, so that the corresponding subduction
results and USCI-CFs collected in Table 3 are equivalent to the counterparts collected
in Table 2.

4.3.2 Subduction to subgroups of Tz related to type 11

Let examine subduction to the subgroups of Tz (C T, z7), which is isomorphic to
O (C Oy). For example, the subduction of T ;5z7(/C;,57) into C3z is conducted by
selecting the values for

S8Gcy; = {C1, G5, C3, G35} (61)

from Eq. 54, which appears in the T z7(/C5, 57)-row of the mark table. The first,
third, 7th, and 17th values are selected from Eq. 54 to give the corresponding mark:

Mt _/cpiCs = 4,2, 1,2), (62)

which can be regarded as an FPV for the subgroup Cs5. The mark table of C35 and
its inverse are obtained as follows:

C G G5 Cs5

1
C(/CH /6 0 0 0 s 000
e _ CUC) [3 1 0 0 |00
“PTC(C) |2 0 2 0 ) Tee T L g 1 o]
Ciz(/Csz) \ 1 1 1 1 A
2 2

(63)

because Csz is isomorphic to the point group D3 (cf. Tables A.12 and B.12 of [44]).
Hence, the following multiplication:

Mt 57/€, 510 X My, = (0.1,0.1) ©4)
gives the subduction:

T 57(/C5,57 4 C35 = C35(/C5) + C35(/C33), (65)
which is shown at the 17th row of Table 3. Note that the degrees of the respective coset
representations are calculated to be |Cs5|/|Cs| = 6/2 = 3 and |C35]/|C35] = 6/6 =
1. Thereby, this subduction gives the USCI-CF b;b3 by considering the sphericities

of the respective coset representations. This behavior corresponds to the subduction
04 (/D3g) | D3 shown in the 17th row of Table 2.

@ Springer



527
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0 0 0 0 0 0 bs tp Aﬁzmo\v 1ory rery ce

0 0 0 0 0 0 bs i (") L PL [43

0 0 0 0 0 0 by 1 A(:,o\v L L 1€

0 0 0 0 0 0 bs q (#£2/) 2L °L 0€

U - - U U 0 s v (“#0/) *7a oreg e

0 0 0 0 0 0 sl enlp Aww:mO\v Iotey 4 AN@Q\V ) 1o0gy 8z

0 0 0 0 0 0 bs vq (£2/) L L LT

t/1 Ui t/1— t/1 t/1 0 & o AN mwo\v 1200y 4 Q Eu\v ) %% o

0 0 0 0 0 0 tg ¥p A 5 \v I Iiq cz
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The subductions to the subgroups collected in the Tgz(I[)-row of Fig. 8 (i.e.,
C5, S3, Cy5, Cs5, Dos, and Ts) can be discussed in a parallel way, so that the
corresponding subduction results and USCI-CFs collected in Table 3 are equivalent
to the counterparts collected in Table 2.

4.3.3 Subduction to subgroups of Tt related to type I

Let examine the subduction to the subgroups of T (C T ;57), which is isomorphic to
T;, (C Op). For example, the subduction of T;z7(/C5,57) into Cs is conducted by
selecting the values for

SSGe, = {C1., C5) (66)

from Eq. 54, which appears in the T ;57(/C5,57)-row of the mark table. The first and
4th values are selected from Eq. 54 to give the corresponding mark:

M170C55p105 = 4. 0), ©7)

which can be regarded as an FPV for the subgroup Cs.
The mark table of C5 and its inverse are obtained as follows:

C G 1
Mes = e (? ! ) M, =(_§% ?) (68)
Hence, the following multiplication:
M, (/CyaiCs X MG = (2,0) (69)

gives the multiplicities of C5(/C) and C5(/Cs). This means that the subduction is
represented as follows:

T 57(/C551) | Co =2C5(/Cy), (70)

where the degree of the coset representation C;(/Cy) is calculated to be |C5|/|Cy| =
2/1 = 2. Because the subgroup Cs is presumed to be achiral and Cj is chiral, this
subduction gives the USCI-CF c% by considering the sphericities of the respective
coset representations, as listed in the 4th row of Table 3. This behavior corresponds
to the subduction Oy (/D34) | Cs shown in the 4th row of Table 2.

4.3.4 Subduction to remaining subgroups of T ;=7 related to type IV

Let examine the subduction to the remaining subgroups of T ;57, which are listed in
the T z7(IV)-row of Fig. 8. For example, the subduction of T ;5z7(/C;,57) into the
subgroup Csz5 (Eq. 42) requires the data of Cs55. By considering the isomorphism
between Cy55 (C T 57) and C, (C Oy), its SSG is found to be
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SSGCSGE = {Clv C&r CE, CS’ CS(AJ:(?} ’ (71)

the subgroups of which appear in the first, third, 4th, 5th and 14th positions of SSGr _~
(Eq. 51).

According to the USCI approach [44], the mark of this subduction is selected from
Eq. 54, which appears in the T ;5 7(/C5,57)-row of the mark table. The first, third, 4th,
5th and 14th values are selected from Eq. 54 to give the corresponding mark:

MT(]F;?(/C:%UE?)\LCS;EI\ = (4’5 27 Os 27 O)s (72)

which is regarded as an FPV for the subgroup C,s5.
The mark table of C;55 and its inverse are obtained as follows:

C G G Cs Cys

Ci55(/C1) 0
Cs55(/C5)
MC;;;A = Cs&?(/ca)
Cs55(/Cs)

Cs55(/Cs55)

0

— NN A

0 0
2 0
0 0
0 2
1 1

- o O O

| e

o O

oS O O

M71

60

(73)

S O =
S NI=

Bl B— B—

wI—
- o o o o

NI—

NI
NI—
B—

because Cg55 is isomorphic to the point group Cy, (cf. Tables A.5 and B.5 of [44]).
Hence, the following multiplication:

M 57/C3501Coz5 X M(it?a =(0,1,0,1,0) (74)
gives the subduction:
T;57(/C357) { Csa5 = Cs55(/C5) + Ciz5 (/Cy), (75)

which is shown at the 14th row of Table 3. This subduction gives the USCI-CF asca
by considering the sphericities of the respective coset representations. This behavior
corresponds to the subduction Oy, (/D3g) | C’2’v shown in the 14th row of Table 2.

The subductions to the subgroups collected in the T ;z7(IV)-row of Fig. 8. (i.e.,
Css5, Ci57. Saz, Sits Sass, Coyz7s Csus7 Doz and Tz7) can be discussed in
a parallel way, so that the corresponding subduction results and USCI-CFs collected
in Table 3 are equivalent to the counterparts collected in Table 2.
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5 Symmetry-itemized enumeration
5.1 Fixed-point vectors for symmetry-itemized enumeration

A subduced cycle index with chirality fittingness (SCI-CF) defined as a product of
USCI-CFs (Def. 19.3 of [44]) is capable of evaluating the number of fixed promole-
cules as RS-stereoisomers. Such an SCI-CF is identical with the corresponding USCI-
CF (the USCI-CF-column of Fig. 3) in the present enumeration of RS-stereoisomers,
because there exists a single orbit.

Suppose that substituents for the four positions of 1 are selected from an inventory
of proligands:

X={A,B,X,Y; p,q,r,8 P,q,T,5}, (76)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p,
q/q, 1/t, and s/s represent pairs of enantiomeric proligands in isolation. According to
Lemma 19.2 of [44], we use the following ligand-inventory functions:

ag = A +B? + X4+ Y? (77)

ca =AY+ B + X + Y 4 2p?2p1/% 4 2q?/2q2 4 2092502 4 254/ 25)2
(78)

ba =AY+ B+ X+ Y 4 pl 4 1l s 5 4 T 45 (79)

It should be noted that the power d /2 appearing in Eq. 78 is an integer because the sub-
script d of ¢y is always even in the light of the enantiosphericity of the corresponding
orbit. These ligand-inventory functions are introduced into an SCI-CF to give a gen-
erating function, in which the coefficient of the term A“B?X*YYpPpPqiqir’ q"s*q*
indicates the number of fixed promolecules to be counted. Because A, B, etc. appear
symmetrically, the term can be represented by the following partition:

[0l =1la,b,x,y;p,P,q,q,1,7,5,5], (80)

where weputa > b >x >y, p>7p, g >
without losing generality.

For example, let us examine the SCI-CF (USCI-CF) for T ;57(/C5,57) J Cs, ie.,
a%cz, into which the ligand-inventory functions (Eqgs. 77-79) are introduced. The

resulting equation is expanded to give the following generating function:

,r>r,s>5s,andp>qg>r>s

<

gc, = (A+B+ X+ Y)?(A? + B2 + X* + Y? + 2pp + 2qq + 21T + 255)
={A*+B* + X* + YU + 2AB +2A°X + 2 APY + - )
+{2A%B? +2A%X% + .-} + (2A’BX + 2A°BY + - -}
+{2A%pp 4 2A%qq + - - - } + {4ABpp + 4ABqq + - - -} (81)
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Among these terms, for example, we focus our attention on A* (as a representative of
the first pair of braces) and 2A3B (as a representative of the second pair of braces). The
coefficient 1 of A* means that one promolecule with the formula A* or the partition:

[611 =[4,0,0,0:0,0,0,0,0,0,0,0] (82)

is fixed under the action of C,. The coefficient 2 of A>B means that two promolecule
with the formula A3B or the partition:

0], =13,1,0,0;0,0,0,0,0,0,0, 0] (83)
are fixed under the action of C. These results are symbolically represented as follows:

ponc =1 (84)
PO1,Cs = 2 (85)

This procedure is repeated to cover all the subgroups contained in SSGr - (Eq. 51).

Thereby, we obtain P, G for G j (€ SSGr d~7), which are collected so as to give an
J o

FPV for symmetry-itemized enumeration for the partition [6];:

FPV o),
= (PIO1Crs s PIONCss -+ Pgy, G -+ -0 PIONT57)
= LLLLLL L L L LT,
LLLL. (86)

Similarly, another FPV for symmetry-itemized enumeration for the partition [0]; is
obtained:

FPV 61,
= (P[61,Cy» - - - » PIO1Cys -+ - » PiopGo PIOLT 157)
=(4,0,2,0,2,4,1,0,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0, 1,0,
0,0,0,0). (87)

Note that the values pg],c, (Eq. 84) and ppg},c, (Eq. 85) appear at the 5th positions
of the respective FPVs (Eqgs. 86 and 87).

According to Theorem 19.4 (coupled with Theorem 15.4) in [44], the FPVs are
multiplied by the inverse Mf;5; (Eq. 4.2) to give the following isomer-counting vectors
(ICVs):
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ICV{g), = FPV|g}, x MiilET
= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0, 1),
ICV gy, = FPV|g, x MT_dlgf
= (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0,
0,0,0,0). (89)

(88)

By referring to SSGr - (Eq. 51), Eq. 88 indicates that one promolecule (a quadruplet)
as an RS-stereoisomer with [6]; (A4 etc.) exists to belong to T 57, while Eq. 89
indicates that one promolecule (a quadruplet) as an RS-stereoisomer with [0], (A’B
etc.) exists to belong to C;, =7

5.2 Fixed-point matrices for symmetry-itemized enumeration

For the purpose of systematic enumeration, several FPVs can be collected as row
vectors of a matrix, which is called a fixed-point matrix (FPM) according to Sections
15.2 and 19.2 of [44]. For example, such an FPM as corresponding to the following
partitions:

[0], = [4,0,0,0;0,0,0,0,0,0,0,0] (for A*etc.) (90)
01, = [3,1,0,0;0,0,0,0,0,0,0,0] (forA’Betc.) 91)
[01; = [3,0,0,0;1,0,0,0,0,0,0,0]  (for A’petc.) (92)
0]y = [2,2,0,0;0,0,0,0,0,0,0,0] (for A’B?etc.) (93)
[6]s = [2,0,0,0;2,0,0,0,0,0,0,0] (for A’p?etc.) (94)
[6]¢ =[2.1,1,0;0,0,0,0,0,0,0,0] (for A’BX etc.) (95)
(017 =[2,1,0,0;1,0,0,0,0,0,0,0] (forA’Bpetc.) (96)
[6]s = [2,0,0,0;1,1,0,0,0,0,0,0]  (for A’ppetc.) 97)
[6]o =[2,0,0,0;1,0,1,0,0,0,0,0] (for A’pqetc.) (98)
0110 =1[1,1,1,1;0,0,0,0,0,0,0,0]  (for ABXY) (99)
6]y, =1[1,1,1,0;1,0,0,0,0,0,0,0] (for ABXp etc.) (100)
(6112 = [1,1,0,0;2,0,0,0,0,0,0,0]  (for ABp?etc.) (101)
6113 =1[1,1,0,0;1,1,0,0,0,0,0,0]  (for ABppetc.) (102)
6114 =11,1,0,0;1,0,1,0,0,0,0,0] (for ABpqetc.) (103)
[6]35 = [1,0,0,0;3,0,0,0,0,0,0,0] (for Ap> etc.) (104)
6116 = [1,0,0,0;2,1,0,0,0,0,0,0]  (for Ap*petc.) (105)
(6117 =[1,0,0,0;2,0,1,0,0,0,0,0] (for Ap>qetc.) (106)
[6]1s =11,0,0,0;1,1,1,0,0,0,0,0] (for Appqetc.) (107)
(6119 =[1,0,0,0;1,0,1,0,1,0,0,0]  (for Apgretc.) (108)
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can be constructed from the data of generating functions (e.g., Eq. 81) by applying the
procedure described above (cf. Eqs. 86 and 87 for obtaining FPV g}, and FPV4,).
Thereby, we obtain the following FPM:

FPM;
[6]1; 11111 1rr1r1rrr1rrr1rrrrrr1rrrrrrrgd
6], 14 02024 100000000211100000000100000
013 |4 02000 100000000010000000000000000
[0ly |6 22226 000020222200000000020000000
[#ls | 6 22000 000020000000000000000000000

[0lg | 12020212000000000200000000000000000
[0]; | 1202000 000000000000000000000000000
[flg | 1202420 000000020000000000000000000
[0lg | 1202000 000000000000000000000000000
=1[0]1p]24000024000000000000000000000000000
[6];; ] 2400000 000000000000000000000000000
[0]12 ] 1202000 000000000000000000000000000
[0]l13 12400040 000000000000000000000000000
[0]14 | 2400000 000000000000000000000000000
[0l 14 02000 100000000010000000000000000
[0lig | 1202000 000000000000000000000000000
[0]17 1] 1202000 000000000000000000000000000
[0lig | 2400000 000000000000000000000000000
[6]l19 \2400000 000000000000000000000000000
(109)

where the values collected in each column appear as the coefficients of the terms
which correspond to the partitions [6]; (i = 1-19), appearing in the generating
function of the RS-stereoisomeric group of the column. Thus, the coefficients of
respective terms in the generating function gc, (Eq. 81) appear in the Cs-column
(the 5th column) of the FPM; (Eq. 109), where non-zero values appear in the [0];-row
(for A% etc.), the [0]x-row (for A3B etc.), the [0]s-row (for A2B2 etc.), the [0]6-
row (for AZBX etc.), the [@]g-row (for Azpﬁ etc.), and the [0];3-row (for ABpp
etc.).

Because the FPM (Eq. 109) contains FPVs as its row vectors, it is multiplied by
the inverse Mfdlg - (Eq. 4.2), so as to give an isomer-counting matrix (ICMy):
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ICM; = FPM; x My

611
01>
[0]13
[014
[0]5
[0]6
[017
[0]g
[019
= [0]o
[0111
[0]12
0113
[0]14
0115
[0]16
[0117
[0]18
[0119

00
00
00
00

00000000
00000000
00000000
00000000 0000COO
00 00000001/2000000
00 00000000 O0OOOO1O0
01200000000 000000
00 00000000 001000
01200000000 000000
00 00100000 000000
1/200 00000000 000000
0 01/200000000 000000
0 00 01000000 000000O
1200 00000000 000000
0 00 00000000
0 01/200000000
0 01/200000000

000000
000000

SO oo oo oo oo

000000
000000
000000

1/200 00000000

1200 00000000 000000

000001/20000000000000000

000001/20000000000000000

0000000000000001
0000000000100000

0000000010000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000

(110)

The ICM; contains the resulting ICVs as its row vectors, so that the [0];- and the
[6]>-rows are identical with the vectors shown in Eqgs. 88 and 89.

The value % at the intersection between the [0]3-row and Csz-column (the 17th
column) in the ICM; (Eq. 110) corresponds to the term % (A3p—|—A313), which indicates
that an enantiomeric pair is counted once.

For an additional example, let us consider an FPM corresponding to the following

partitions:

[0]0 =[0,0,0,0;4,0,0,0,0,0,0,0]
[6]; =10,0,0,0;3,1,0,0,0,0,0,0]
[0], =10,0,0,0;3,0,1,0,0,0,0,0]
[6],3 =10,0,0,0;2,2,0,0,0,0,0,0]
[0]4 =10,0,0,0;2,1,1,0,0,0,0,0]
[6]»5 =10,0,0,0;2,0,2,0,0,0,0,0]
[6]6 =10,0,0,0;2,0,1,1,0,0,0,0]
[6],7 =10,0,0,0;2,0,1,0,1,0,0,0]
[0],s =10,0,0,0;1,1,1,1,0,0,0,0]
[0]9 =10,0,0,0;1,1,1,0,1,0,0,0]
[0]30 =10,0,0,0;1,0,1,0,1,0,1,0]

(for p* etc.) (111)
(for p31_) etc.) (112)
(for p3q etc.) (113)
(for p*p° etc.) (114)
(for p*pq etc.) (115)
(forp*q® etc.) (116)
(for pqg etc.) (117)
(for pzqr etc.) (118)
(for ppqq etc.) (119)
(for ppqretc.) (120)
(for pqrs etc.) (121)

The FPM can be constructed from the data of generating functions (e.g., Eq. 81) by
applying the procedure described above:
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FPM,
(0120
(0101
(0122
[0]3 | 6
(0124

= [0]os
(0126
(0127
[0]28
(0129
(0130

>~ B~ =

11000110110000010010000001001000
02000100000000010000000000000000
02000100000000010000000000000000
22400002022000000000002000000000
1202000000000000000000000000000000
6 22000000020000000000000000000000
1202000000000000000000000000000000
1202000000000000000000000000000000
2400800000000000000000000000000000
2400000000000000000000000000000000
2400000000000000000000000000000000

(122)

The FPM (Eq. 53) is multiplied by Mrfdl~ - (Eq. 4.2), so as to give another isomer-
counting matrix (ICM»):

ICM, = FPMj x M’leA
ol

[6lo0 /O 00
[6]b1 ] 0O 00
(0l | O 00
]3]0 00
(0124 | O
=1[0hs |0 00
0126 | O
(0127 | O
[0l | O 00
[0l | 1/200
6130 \1/200

00000000
00000000
00000000
00000000

01/200000000

000000

0000000000001/2000

000001/20000000000000
000001/20000000000000

000000
000000

00000001/2000000

01/200000000
01/200000000

10000000
00000000
00000000

000000
000000
000000
000000
000000

0000001000000
0000000000000
0000000000000
0000000000000
0ooooo0o0000000
0000000000000
0000000000000
0000000000000

000
000
000
000
000
000
000
000
000
000

(123)

The results of the itemized enumeration (Egs. 110 and 123) are illustrated in Fig. 9,
which is a modification of Fig. 3 of [41]. Each promolecule (as a representative of a
quadruplet for a stereoisogram) is selected to be a representative of promolecules
(representatives of quadruplets) with a given partition and accompanied with the
information on its RS-stereoisomeric group, its point group, and its stereoisogram
type. For example, the promolecule 16 with ABXY is a representative of the partition
[6]10, which is characterized by the RS-stereoisomeric group C7, the point group Cy,
and a type-I stereoisogram. Note that each promolecule corresponds to a respective
stereoisogram (cf. Fig. 2 of [41]). The categorization of RS-stereoisomeric groups to
stereoisogram types are summarized in Fig. 8.
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Fig. 9 Quadruplets of RS-Stereoisomers (Types I-V) for tetrahedral promolecules. The symbols A, B, X,
and Y represent atoms or achiral ligands. The symbols p, g, r, and s represents chiral ligands, while each
symbol with an overbar represents the corresponding chiral ligand with the opposite chirality. An arbitrary
promolecule is depicted as a representative of each quadruplet of R S-stereoisomers. The compound number
(its partition), its RS-stereoisomeric group, its point group, and its stereoisogram type are attached to each
promolecule
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6 Type-itemized enumeration
6.1 Type-enumeration matrices

As shown in Fig. 8, the 33 subgroups of the RS-stereoisomeric group T ;7 are cate-
gorized into five types represented by the following sets:

12 15 19 25 31

Type I SG!! {ca,c,,czg,cz,,cy, D,7, T7} (124)
8 11 17 20 30
Type II: SGI!! —{CG,S4,C20,C30,D20, Ts} (125)
Type III: SGIM = {c1 C2,C73,]1)02,2’I7‘} (126)
16 22 24 26 28 29 33
Type IV: SGI'VI = {Csi??rv Cs&l’ 35+ 537 8455 Cous 7 Caua s Dot Tasth
(127)

9 13 18 23 3
Type V: SGIV! {Cs, S4, Cop, Cay, D2g, Ta}. (128)

Each of the tetrahedral promolecules collected in Fig. 9 is a representative (A, A, B, or
B) of a quadruplet which constructs a stereoisogram shown in Fig. 10. The subgroups
of T ;57 for characterizing respective types are shown along with three attributes. For
the three attributes and the related three relationships, see [17] and [41].

Let 71 j; be the ji-element of the inverse mark table Mizl;; - (Eq. 4.2). The (/}.,'-row
is tentatively fixed and the row is summed up according to the categorization of type
I-V as follows:

NO = > (129)
G;esgl

NI = > i (130)
G;esgll

A(’”) > i (131)
GiesGl™

A“V) > mi (132)
G;esGlv]

AW) > (133)
G;esGlV!

N; =ﬁ/‘.”+ﬁj’”+ﬁ}””+1VJ(.’V)+1V}V) (134)

In a parallel way to a gross-enumeration matrix GEM for gross enumerations [cf. Table
2 of the present paper and Eq. 48 of [42]], let us consider a 33 x 6 type-enumeration
matrix TEM for type-itemized enumerations, where the jth row (TEM;) as a row
vector is represented as follows:
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Fig. 10 Stereoisograms for representing R S-stereoisomers of five types. This figure is a modification of
Fig. 6 of [17] and of Fig. 6 of [41], where the subgroups of T ;7 for characterizing respective types are

shown along with three attributes. The symbols A and A (or B and B) represent a pair of enantiomers based
on a tetrahedral skeleton, where the A at the upper-left position of each stereoisogram is selected from the

promolecules listed in Fig. 9

(5. oD oUD SUID SUV) SV)
TEM]_(N,Nj NIDONSD NN ) (135)

for G j (€ SSGr dET) (cf. Eq. 51). The respective elements of TEM are collected in
Table 3. The elements of TEM; are consistent with the coefficients appearing in the
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cycle indices with chirality fittingness (CI-CFs) reported previously [i.e., Eqs. 83 (for
type I), 84 (for type II), 85 (for type III), 81 (for type IV), and 82 (for type V) of [41]],
which were obtained by an alternative way.

Because the FPM| (Eq. 109) contains FPVs as its row vectors, it is multiplied
by the TEM (Eq. 135 and Table 3) so as to give an isomer-type-counting matrix
(ITCM), where the six columns contain the numbers of total quadruplets and those of
quadruplets of the respective types.

@, /1 00 0 10
©, |1 00 0 10
0 |1/2 0 120 00
@, |1t 00 0 10
©s | 1/2 0 120 00
0 |1 00 0 10
0, |12 0120 00
Ms |1 00 0 10
0 |12 0 1/20 00
ITCM; =FPM; x TEM= [0l |1 1 0 0 0 0 (136)
0, |12 00 1/2 00
0,12 0120 00
@lis]1 00 0 01
0, |12 00 1/2 00
0ls |12 0 1/20 00
e | 1/2 0 172 0 0 0
0,12 0120 00
0hs | 12 00 1/2 00
[0l1o \1/2 0 0 1/2 0 0

These values are consistent with the quadruplets listed in Fig. 9. For example, the
value 1/2 at the intersection of the [0]3-row and the third column (the type-II column)
in Eq. 136 corresponds to the term %(A3p + A3p). This term indicates the presence
of a quadruplet of RS-stereoisomers (as a pair of enantiomers) with the partition [6]3,
where the C3z-promolecule 19 is a representative of the quadruplet characterized by
the type-II stereoisogram shown in Fig. 10.

In a similar way, the FPM, (Eq. 122) contains FPVs as its row vectors. The matrix
is multiplied by the TEM (Eq. 135 and Table 3) so as to give an isomer-type-counting
matrix (ITCM), where the six columns contain the numbers of total quadruplets and
of quadruplets of respective types.
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[0l /1/2 0 1/2 0 0 0
0l (172 0 1720 00
0ln |12 0 120 00
Ols|1 00 0 10
s | 1/2 0 1/2 0 0 0
ITCM; = FPM, x TEM = [6]»s | 1/2 0 1/2 0 0 0 (137)
0l | 1/2 0 1/2 0 0 0
0l | 1/2 0 1720 00
Ohs |1 10 0 00
0o | 1/2 00 1/2 0 0
0l \1/2 0 0 1/2 0 0

These values are consistent with the quadruplets listed in Fig. 9. In addition, the values
calculated in Egs. 136 and 137 are consistent with the previous results calculated by an
alternative method [41]: the second columns of Egs. 136 and 137 (type I) is consistent
with Eq. 86 of [41], the third columns (type II) with Eq. 87 of [41], the 4th columns
(type IIT) with Eq. 88 of [41], the 5th columns (type IV) with Eq. 89 of [41], and the
6th columns (type V) with Eq. 90 of [41].

7 Conclusion

After the isomorphism between the RS-stereoisomeric group T ;57 and the point group
Oy, has been throughly discussed, unit-subduced cycle indices with chirality fittingness
(USCI-CFs) for characterizing T ;57 are obtained according to the USCI approach
developed by Fujita [44]. Then, the fixed-point matrix (FPM) method of the USCI
approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calcu-
lated in an itemized fashion with respect to the subgroups of T ;7. After the subgroups
of T 57 are categorized into types I-V, type-itemized enumeration of quadruplets is
conducted to illustrate the versatility of the stereoisogram approach.
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