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Abstract The RS-stereoisomeric group Tdσ̃̂I is examined to characterize quadruplets
of RS-stereoisomers based on a tetrahedral skeleton and found to be isomorphic to
the point group Oh of order 48. The non-redundant set of subgroups (SSG) of Tdσ̃̂I
is obtained by referring to the non-redundant SSG of Oh . The coset representation
for characterizing the orbit of the four positions of the tetrahedral skeleton is clari-
fied to be Tdσ̃̂I (/C3vσ̃̂I ), which is closely related to the Oh(/D3d). According to the
unit-subduced-cycle-index (USCI) approach (Fujita in Symmetry and combinatorial
enumeration in chemistry. Springer, Berlin, 1991), the subdution of Tdσ̃̂I (/C3vσ̃̂I )

is examined so as to generate unit subduced cycle indices with chirality fittingness
(USCI-CFs). The fixed-point matrix method of the USCI approach is applied to the
USCI-CFs. Thereby, the numbers of quadruplets are calculated in an itemized fashion
with respect to the subgroups of Tdσ̃̂I . After the subgroups of Tdσ̃̂I are categorized
into types I–V, type-itemized enumeration of quadruplets is conducted to illustrate the
versatility of the stereoisogram approach.

Keywords Stereoisogram · RS-stereoisomers · RS-stereoisomeric groups ·
Combinatorial enumeration · USCI approach

1 Introduction

The dichotomy between enantiomers and “diastereomers” [1] has scattered uncon-
scious but serious confusion caused by a verbal transmutation of the term “diastere-
omers”, as indicated from a chemical philological point of view [2]. This situation has
not changed yet, so that the dichotomy is widely adopted as one of the fundamental
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concepts in stereochemistry in most textbooks on organic stereochemistry [3–5] and
on organic chemistry [6–10].

Because the conventional term “diastereomers” has no mathematical basis so as to
contain rather indefinite connotation, the history of the Cahn, Ingold and Prelog (CIP)
system [11,12] has shown confusion over chirality and stereogenicity. In a parallel
way, the related method for giving pro-R/pro-S-descriptors [13] has shown confusion
over prochirality and prostereogenicity.

On the basis of the proligand-promolecule model [14], the concept of stereoiso-
grams has been proposed by the author (Fujita) to discuss stereogenicity and chirality
comprehensively [15]. Thereby, it has been clarified that the conventional stereogenic-
ity should be replaced by a more definite term, ‘RS-stereogenicity’ for the purpose of
comparing it with chirality [16]. Each stereoisogram consists of a quadruplet of RS-
stereoisomers, i.e., a reference promolecule, an enantiomer, an RS-diastereomer, and
a holantimer which is capable of comprehensive discussions on pseudoasymmetry,
RS-stereogenicity, chirality and the Cahn-Ingold-Prelog system of RS-nomenclature
[17–20] as well as on prochirality [21–25].

Such a quadruplet contained in a stereoisogram is governed by a newly-defined
RS-stereoisomeric group. The RS-stereoisomeric groups and related groups have been
constructed to discuss tetrahedral derivatives [16], allene derivatives [26,27], square-
planar complexes [28], ethylene derivatives [29], trigonal bipyramidal compounds
[30,31], and prismane derivatives [32,33]. The existence of five types of stereoiso-
grams has been proven on the basis of the existence of five types of subgroups of RS-
stereoisomeric groups [34]. The concept of correlation diagrams of stereoisograms
has been proposed for the purpose of characterizing stereoisomers [35–37]. Method-
ologies for investigating geometric and stereoisomeric features in stereochemistry
have been developed on the basis of the stereoisogram approach [38–40].

In addition to these reports on qualitative discussions, itemized enumeration of
quadruplets of RS-stereoisomers under the action of RS-stereoisomeric groups has
been reported [41], where the itemization is concerned with stereoisograms of Type
I–V. For the purpose of comprehensive discussions, it is desirable to investigate more
detailed itemization.

The author has recently reported symmetry-itemized enumeration of cubane deriv-
atives [42,43], where the USCI (unit-subduced-cycle-index) approach [44–46] is
applied to the Oh-point group. Because the Oh-point group is isomorphic to the
RS-stereoisomeric group of tetrahedral compounds, the present report is devoted to
investigate more detailed itemization of quadruplets of RS-stereoisomers.

2 RS-stereoisomeric groups

Let us first consider a tetrahedral skeleton 1 to introduce the concept of stereoisograms
[15]. The skeleton 1 is controlled by a point group Td (order 24), which can be extended
into the corresponding RS-stereoisomeric group Tdσ̃̂I (order 48).

The RS-stereoisomeric group Tdσ̃̂I has a normal subgroup T(order 12), which is
also a normal subgroup of Td . Hence, the Tdσ̃̂I -group is decomposed into cosets as
follows:
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Tdσ̃̂I = T + σT + σ̃T + ̂I T, (1)

which has been noted previously (Eq. 8 of [41]). Note that the point group Td for the
reference tetrahedral skeleton is decomposed as follows:

Td = T + σT, (2)

where the symbol σ is a representative selected from the 12 reflection operations of Td .
The coset decomposition shown by Eq. 2 characterizes an enantiomeric relationship.

In addition, there appears a subgroup of order 24 for characterizing an RS-
diastereomeric relationship:

Tσ̃ = T + σ̃T, (3)

which has been noted previously (Eq. 44 of [41]). Note that the symbol σ̃ represents an
operation which has the same permutation as σ but no alternation of chirality. Another
subgroup of order 24 characterizes a holantimeric relationship:

T
̂I = T + ̂I T, (4)

which has been noted previously (Eq. 57 of [41]). Note that the symbol ̂I represents
an operation which has the same permutation as I but alternation of chirality.

The operations of Tdσ̃̂I are summarized in the Tdσ̃̂I -columns of Table 1. The upper-
left part marked by the gray letter A collects the operations of the normal subgroup
T, the lower-left part marked by the gray letter B collects the operations of the coset
σT(= Td − T) (cf. Eq. 2), the upper-right part marked by the gray letter C collects
the operations of the coset σ̃T(= Tσ̃ − T) (cf. Eq. 3), and the lower-right part marked
by the gray letter D collects the operations of the coset ̂I T(= T

̂I − T) (cf. Eq. 4).
Hence, Eqs. 1–4 are alternatively represented in the form of sets of operations:

Tdσ̃̂I = {A, B, C, D} (5)

Td = {A, B} (6)

Tσ̃ = {A, C} (7)

T
̂I = {A, D} (8)

T = {A}, (9)

where the cosets A, B, C, and D (gray letters) contain the operations listed in the
Tdσ̃̂I -columns of Table 1. It should be noted that each operation of A corresponds to
an operation of D, where the correspondence is shown by the absence or presence of
a hat accent. In a similar way, each operation of B corresponds to an operation of C,
where the correspondence is shown by the absence or presence of a tilde accent.

Each of the four cosets shown in the right-hand side of Eq. 1 corresponds to
one component of a quadruplet of RS-stereoisomers, i.e., T to a reference skeleton,
σT(= Td − T) to its enantiomeric skeleton, σ̃T(= Tσ̃ − T) to its RS-diastereomeric
skeleton, and ̂I T(= T

̂I − T) to its holantimeric skeleton. Thereby, a quadruplet of
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Table 1 Operations of Tdσ̃̂I and Coset Representation of Tdσ̃̂I (/C3vσ̃̂I ) versus Operations of Oh and
Coset Representation of Oh(/D3d )

RS-stereoisomers is selected as shown in Fig. 2a, where an appropriate representative
is selected according to each coset of Eq. 1, i.e.,

1 for I (∈ T) ∼ (1)(2)(3)(4),

1 for σd(1)(∈ σT = Td − T) ∼ (1)(2 4)(3),

3 for σ̃d(1) (∈ σ̃T = Tσ̃ − T) ∼ (1)(2 4)(3), and

3 for ̂I (∈ ̂I T = T
̂I − T) ∼ (1)(2)(3)(4).

The resulting diagram (Fig. 2a) is here called a reference stereoisogram. Strictly speak-
ing, each skeleton collected in Fig. 2a corresponds to a representative of the corre-
sponding coset, i.e., I (∈ T) for 1, σd(1) (∈ σT = Td − T) for 1, σ̃d(1) (∈ σ̃T =
Tσ̃ − T) for 3, ̂I (∈ ̂I T = T

̂I − T) for 3. It should be noted that each representative

123



512 J Math Chem (2014) 52:508–542

Fig. 1 A reference tetrahedral
skeleton 1 and a reference cubic
skeleton 2 1

2

3

4 C

2 3

41

4 1

23

1 2

skeleton (1, 1, 3, or 3) is converted into its homomer under the action of T, where the
mode of numbering is altered according to T so as to result in the numbering due to
the respective coset.

The operations of the Td collected in the A- and B-part of Table 1 correspond
to respective products of cycles, which are contained in the coset representation
Td(/C3v) [16]. The products of cycles corresponding to the operations collected in
the C- and D-parts have been originally assigned by taking account of the corre-
spondence between σT and σ̃T or between T and ̂I T, where an overline is attached
or not [e.g., (1)(2)(3)(4) vs. (1)(2)(3)(4) and (1)(2 4)(3) vs. (1)(2 4)(3)] to each
product of cycles and a tilde (or hat) accent is attached or not to each opera-
tion [e.g., I vs. ̂I and σd(1) vs. σ̃d(1)]. One of the main tasks of the present arti-
cle to redefine the products of cycles as the elements of the coset representation
Tdσ̃̂I (/C3vσ̃̂I ).

To demonstrate the correspondence between Td and Oh , let us next examine the
cubic skeleton 2 (Fig. 1), where we focus our attention on its four diagonals. The four
diagonals of 2 constructs an orbit governed by the coset representation Oh(/D3d) of
degree 4. The Oh(/D3d)-orbit is restricted to Td in accord with the subduction of the
coset representation:

Oh(/D3d) ↓ Td = Td(/C3v). (10)

The Oh(/D3d)-orbit of the four diagonals of 2 is not separated under this subduction
so as to retain one orbit governed by the coset representation Td(/C3v).

On the other hand, the eight vertices of 2 is governed by the coset representation of
degree 8, i.e., Oh(/C3v), which is reduced to Td according to the following subduction:

Oh(/C3v) ↓ Td = 2Td(/C3v), (11)

where the eight vertices are separated into two Td(/C3v)-orbits, as designated by solid
circles and open circles.

To discuss Eq. 10 (for the four diagonals) and Eq. 11 (for the eight vertices) com-
prehensively, the eight vertices are numbered from 1 to 4 and from 1 to 4, where
the two terminal vertices of each diagonal are designated by a number and its over-
lined counterpart, as shown in 2. When the four vertices marked by a solid circle
in 2 are considered to correspond to the four vertices of 1, the reference stereoiso-
gram shown in Fig. 2a can be converted into the reference stereoisogram shown in
Fig. 2b.
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(a) Stereoisogram for a tetrahedral skeleton (b) Stereoisogram for a cubic skeleton

Fig. 2 Reference stereoisograms for a tetrahedral skeleton (a) and for a cubic skeleton (b)

3 Point groups isomorphic to RS-stereoisomeric groups

3.1 Operations of Tdσ̃̂I and those of Oh

According to the definition of Tdσ̃̂I , the Td -part of Tdσ̃̂I is isomorphic to (the same
as) the Td -part of Oh . Let us first examine σd(1)(∼ (1)(2 4)(3)), which is an element
of Td − T (⊂ Tdσ̃̂I or ⊂ Oh). As found in Fig. 3a, the operation σd(1) converts 5 into
6 under the action of Tdσ̃̂I or Oh , where the operation σd(1) requires no bond cleavage
nor distortion. This means that this conversion retains the framework of the tetrahedral
skeleton (within the cubic skeleton). Note that any operation of a point group for a
skeleton retains the framework of the skeleton at issue.

As illustrated in Fig. 3b, the operation σ̃d(1) (∼ (1)(2 4)(3)), which is an element
of Tσ̃ − T (⊂ Tdσ̃̂I ), requires bond cleavage or distortion (e.g., pseudo-rotation)
during the conversion of 5 into 7. This means that this conversion does not retain the
framework of the tetrahedral skeleton (within the cubic skeleton), if we take account
of the RS-stereoisomeric group Tdσ̃̂I .

On the other hand, the operation C′
2(1) (∼ (1)(2 4)(3) for the four diagonals),

which is an element of O − T (⊂ Oh), converts 5 into 8, where the operation C′
2(1)

requires no bond cleavage. This means that this conversion retains the framework of
the tetrahedral skeleton (within the cubic skeleton), if we take account of the point
group Oh .

To clarify the isomorphism between Tdσ̃̂I and Oh , the resulting skeletons 7 (with
bond cleavage or distortion) and 8 (without distortion) should be recognized to be
dual. The duality between 7 and 8 can be accomplished by considering a duality oper-
ation in which each solid circle and each open circle are exchanged and each number
and its overlined counterpart are exchanged. Thereby, the correspondence between
σ̃d(1) (∼ (1)(2 4)(3)) and C′

2(1) (∼ (1)(2 4)(3)) is recognized to be a pair of dual
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(a)

(b)

Fig. 3 Correspondence between elements of point groups and those RS-stereoisomeric groups. a An
element σd(1) is contained in Td − T, which is a subgroup for Oh and Tdσ̃̂I . b An element σ̃d(1) is
contained in Tσ̃ − T, which is a subgroup of an RS-stereoisomeric group Tdσ̃̂I ; while C′

2(1)
is contained

in O − T, which is a subgroup of a point group Oh

elements to assure the isomorphism between Tdσ̃̂I and Oh , as shown in Fig. 3b. The
permutation (1)(2 4)(3) for σ̃d(1) (∈ Tdσ̃̂I ) is apparently identical with the permuta-
tion (1)(2 4)(3) for C′

2(1) (∈ Oh), although their objects (vertices vs. diagonals) are
different.

Let us second examine C2(1) (∼ (1 2)(3 4)), which is an operation contained in T.
Note that T is a subgroup of Td , which is a common subgroup of Tdσ̃̂I or Oh . As
found in Fig. 4a, the conversion of 5 into 9 requires no bond cleavage so as to retain
the framework of the tetrahedral skeleton (within the cubic skeleton).

As found in Fig. 4b, the operation ̂C2(1) (∼ (1 2)(3 4)), which is contained in
T

̂I − T (⊂ Tdσ̃̂I ), converts 5 into 10, where bond cleavage is necessary in the process
of exchanging 1 and 1, etc. (cf. 9 → 10).

On the other hand, the operation σh(3) (∼ (1 2)(3 4)), which is contained in
Th − T (⊂ Oh), converts 5 into 11 without bond cleavage.

To clarify the isomorphism between Tdσ̃̂I and Oh , 10 and 11 are recognized to
be dual in terms of a duality operation in which each solid circle and each open
circle are exchanged and each number and its overlined counterpart are exchanged. It
follows that ̂C2(1) (∼ (1 2)(3 4)) and σh(3) (∼ (1 2)(3 4)) are recognized to be dual
elements so as to assure the isomorphism between Tdσ̃̂I and Oh , as shown in in Fig. 4b.
The permutation (1 2)(3 4) for ̂C2(1) (∈ Tdσ̃̂I ) and the permutation (1 2)(3 4) for
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(a)

(b)

Fig. 4 Correspondence between elements of point groups and those RS-stereoisomeric groups. a An
element C2(1) is contained in T, which is a subgroup for Oh and Tdσ̃̂I . b An element ̂C2(1) is contained
in T

̂I − T, which is a subgroup of an RS-stereoisomeric group Tdσ̃̂I ; while σh(3) is contained in Th − T,
which is a subgroup of a point group Oh

σh(3) (∈ Oh) are apparently identical with each other, although their objects (vertices
vs. diagonals) are different.

Let us third examine the identity element I (∼ (1)(2)(3)(4)), which is an operation
contained in T. Note that T is a subgroup of Td , which is a common subgroup of
Tdσ̃̂I or Oh . As found in Fig. 5a, the identity conversion of 5 into 5 requires no bond
cleavage so as to retain the framework of the tetrahedral skeleton (within the cubic
skeleton).

As found in Fig. 5b, the operation ̂I (∼ (1)(2)(3)(4)), which is contained in
T

̂I − T (⊂ Tdσ̃̂I ) converts 5 into 12, where bond cleavage is necessary in the process
of exchanging 1 and 1 and so on. The exchange between 1 and 1 etc. serves as a
basis of the exchange between a proligand (e.g., p) and a counterpart proligand of the
opposite chirality (e.g., p), which requires bond cleavage.

On the other hand, the inversion operation i (∼ (1)(2)(3)(4)), which is contained
in Th − T (⊂ Oh), converts 5 into 13 without bond cleavage.

To clarify the isomorphism between Tdσ̃̂I and Oh , 12 and 13 are recognized to be
dual in terms of a duality operation in which each solid circle and each open circle are
exchanged and each number and its overlined counterpart are exchanged. It follows
that ̂I (∼ (1)(2)(3)(4)) and i (∼ (1)(2)(3)(4)) are recognized to be dual elements
so as to assure the isomorphism between Tdσ̃̂I and Oh , as shown in in Fig. 5b. The
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(a)

(b)

Fig. 5 Correspondence between elements of point groups and those RS-stereoisomeric groups. a An
element C2(1) is contained in T, which is a subgroup for Oh and Tdσ̃̂I . b An element ̂C2(1) is contained
in T

̂I − T, which is a subgroup of an RS-stereoisomeric group Tdσ̃̂I ; while σh(3) is contained in Th − T,
which is a subgroup of a point group Oh

permutation (1)(2)(3)(4) for ̂I (∈ Tdσ̃̂I ) and the permutation (1)(2)(3)(4) for the
inversion operation i (∈ Oh) are apparently identical with each other, although their
objects (vertices vs. diagonals) are different.

Similar examinations are conducted with respect to the remaining operations of
Tdσ̃̂I and those of the point group Oh . The resulting correspondence is summarized
in Table 1. The subgroups of Tdσ̃̂I shown by Eqs. 5–9 correspond to the following
subgroups of Oh (A, B, C, D are gray letters):

Oh = {A, B, C, D} (12)

Td = {A, B} (13)

O = {A, C} (14)

Th = {A, D} (15)

T = {A}. (16)

The comparison between Eqs. 5–9 and Eqs. 12–16 results in the following set of
isomorphism: Oh ∼= Tdσ̃̂I , Td = Td (identical), O ∼= Tσ̃ , and Th ∼= T

̂I , and T = T
(identical). It follows that Eqs. 1–4 for the RS-stereoisomeric group Tdσ̃̂I correspond
respectively to the coset decompositions for the point group Oh :
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Oh = T + σd(1)T + C ′
2(6)T + iT (17)

Td = T + σd(1)T (18)

O = T + C ′
2(6)T (19)

Th = T + iT (20)

3.2 Symmetry elements of Tdσ̃̂I and those of Oh

Symmetry elements of the point group Oh are shown in Fig. 6, which is a modification
of Fig. 2.2 of [46]. Note that the diagram of the inversion center is omitted and that
the numbering of the vertices are changed from the original numbering [46]. The
top row depicts rotation or rotoreflection axes: 14a–14c; and the bottom row depicts
mirror planes: 14d–14g. For example, the C4(3)-axis in 14a generates the operations
C4(3), C2(3) (= C2

4(3)), and C3
4(3), where it implies the presence of the C2(3)-axis. On

the other hand, the S4(3)-axis in 14a generates the operations S4(3), C2(3) (= S2
4(3)),

and = S3
4(3), where it also implies the presence of the C2(3)-axis.

As summarized in Table 1, Figs. 3, 4 and 5 provide the correspondence between
the operations of the point group Oh and those of the RS-stereoisomeric group Tdσ̃̂I .
Thereby, symmetry elements of the RS-stereoisomeric group Tdσ̃̂I are obtained as
shown in Fig. 7, which corresponds to Fig. 6. The symmetry elements without a
tilde or hat accent in Fig. 7 depict rotation or rotoreflection axes, which construct the
point group Td (⊂ Tdσ̃̂I ). The symmetry elements with a tilde or hat accent construct
the coset Tdσ̃̂I − Td (i.e., {C, D} as gray letters). For example, the ˜S4(3)-axis in

Fig. 6 Symmetry elements of the point group Oh for characterizing a cubane skeleton [46]. The top row
depicts rotation or rotoreflection axes: 14a–14c; and the bottom row depicts mirror planes: 14d–14g
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Fig. 7 Symmetry elements of the RS-stereoisomeric group Tdσ̃̂I for characterizing a cubane skeleton. The
symmetry elements without a tilde or hat accent depict rotation or rotoreflection axes, which construct the
point group Td (⊂ Tdσ̃̂I ). The symmetry elements with a tilde or hat accent construct the coset Tdσ̃̂I −Td

15a generates the operations ˜S4(3), C2(3) (= ˜S2
4(3)), and ˜S3

4(3), where it implies the
presence of the C2(3)-axis. On the other hand, the S4(3)-axis for the RS-stereoisomeric
group Tdσ̃̂I is identical with the S4(3)-axis for the point group Oh , which generates
the operations S4(3), C2(3)(= S2

4(3)), and = S3
4(3).

3.3 Factor groups derived from Tdσ̃̂I and Oh

Because the subgroup T is a normal subgroup of Tdσ̃̂I , Eq. 1 provides a factor group:

Tdσ̃̂I /T = {T, σT, σ̃T, ̂I T}. (21)

As proved generally [34], a factor group generated from an RS-stereoisomeric group is
isomorphic to the point group C2v or the Klein four-group, so that it has five subgroups
only, just as the point group C2v or the Klein four-group has subgroups only. The five
subgroups are named Type I–V as follows:

Type IV {T, σT, σ̃T, ̂I T} (22)

Type V {T, σT} (23)

Type II {T, σ̃T} (24)

Type I {T, ̂I T} (25)

Type III {T} (26)
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These five types create stereoisograms of five types [34]. They are related to the coset
decompositions represented by Eqs. 1–4 or by Eqs. 5–8 (along with Eq. 9).

In a parallel way, Eq. 17 provides another factor group:

Oh/T = {T, σd(1)T, C ′
2(6)T, iT} (27)

which is isomorphic to the point group C2v or the Klein four-group. The factor group
Oh/T has five subgroups only. They are related to the coset decompositions repre-
sented by Eqs. 17–20 or by Eqs. 12–15 (along with Eq. 16).

3.4 Subgroups of Tdσ̃̂I and Those of Oh

The point group Oh has 33 subgroups up to conjugacy, which have been discussed in
detail in terms of a non-redundant set of subgroups (SSG) [47]:

SSGOh =
{

1
C1,

2
C2,

3
C′

2,
4

Cs,
5

C′
s,

6
Ci ,

7
C3,

8
C4,

9
S4,

10
D2,

11
D′

2,
12

C2v,
13

C′
2v,

14
C′′

2v,
15

C2h,
16

C′
2h,

17
D3,

18
C3v,

19
C3i ,

20
D4,

21
C4v,

22
C4h,

23
D2d ,

24
D′

2d ,
25

D2h,
26

D′
2h,

27
T,

28
D3d ,

29
D4h,

30
O,

31
Th,

32
Td ,

33
Oh

}

(28)

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 33 are attached to the respec-
tive subgroups. In accord with Eqs. 17–20 (and the trivial case of T), the subgroups
collected in Eq. 28 are categorized to give five categories, as shown in Fig. 8:

1. five subgroups of T,
2. six subgroups of Td except those of T,
3. six subgroups of O except those of T,
4. seven subgroups of Th except those of T, and
5. nine subgroups of Oh except those of T, Td , O, and Th .

Because the RS-stereoisomeric group Tdσ̃̂I is isomorphic to the point group Oh ,
there appear 33 subgroups of Tdσ̃̂I , which are isomorphic to those of Oh , as summa-
rized in Fig. 8. By referring to the correspondence between the operations of Tdσ̃̂I and
those of Oh (Table 1), the respective subgroups of Tdσ̃̂I are constructed as follows:

1. The five subgroups of the point group T are also the subgroups of the RS-
stereoisomeric group Tdσ̃̂I . The symbols of the point groups are also used to
designate the subgroups of the RS-stereoisomeric group. See Fig. 8. These RS-
stereoisomeric groups are categorized to type III.

2. The six subgroups of Td (except those of T) are the subgroups of the RS-
stereoisomeric group Tdσ̃̂I at the same time. The symbols of the point groups
are also used to designate the subgroups of the RS-stereoisomeric group except
that the symbols C′

s and C′
2v in Oh are changed into Cs and C2v in Tdσ̃̂I because
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Fig. 8 Subgroups of the point group Oh and the corresponding isomorphic subgroups of the RS-
stereoisomeric group Tdσ̃̂I . For the convenience of cross reference to Eqs. 28 and 51, sequential numbers
from 1 to 33 are attached to the respective subgroups. The symbols for the subgroups of Td are essentially
common in both of the two isomorphic series. The symbol for each subgroup of Tσ̃ (II) contains a tilde
accent. The symbol for each subgroup of T

̂I (I) contains a hat accent. The symbol for each subgroup of
Tdσ̃̂I (IV) contains both a tilde and a hat accent

of no confusion. See Fig. 8. These RS-stereoisomeric groups are categorized to
type V.

3. The six subgroups of O (except those of T) correspond to the following subgroups
of Tσ̃ (−T).

Cσ̃ = {I, σ̃d(1)} (⊃ C1) (29)

S̃4 = {I,˜S4(3), C2(3),˜S
3
4(3)} (⊃ C2) (30)

C2σ̃ = {I, C2(3), σ̃d(1), σ̃d(6)} (⊃ C2) (31)

C3σ̃ = {I, C3(1), C2
3(1), σ̃d(1), σ̃d(2), σ̃d(3)} (⊃ C3) (32)

D2σ̃ = {I, C2(1), C2(2), C2(3), σ̃d(1), σ̃d(6),˜S4(3),˜S
3
4(3)} (⊃ D2) (33)

Tσ̃ = {A, C} (⊃ T) (cf. Eq. 7) (34)

The symbols of the subgroups are selected by designating a common subgroup
to Td (denoted in a pair of parentheses) which is attached by a suffix to refer
to an uncommon operation. Each of the symbols contains a tilde accent in its
suffix. For example, the symbol C2σ̃ stems from the largest subgroup C2 (as a
common subgroup to Td ) and from an uncommon operation σ̃d(1). The symbol
S̃4 is adopted for the purpose of avoiding the confusion with C2σ̃ . These RS-
stereoisomeric groups are categorized to type II.
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4. The seven subgroups of Th (except those of T) correspond to the following sub-
groups of T

̂I (−T).

Cσ̂ = {I, ̂C2(3)} (⊃ C1) (35)

C
̂I = {I, ̂I } (⊃ C1) (36)

C2σ̂ = {I, C2(3), ̂C2(1), ̂C2(2)} (⊃ C2) (37)

C2̂I = {I, C2(3), ̂C2(3), ̂I } (⊃ C2) (38)

C3̂I = {I, C3(1), C2
3(1),

̂I , ̂C3(1), ̂C2
3(1)} (⊃ C3) (39)

D2̂I = {I, C2(1), C2(2), C2(3), ̂I , ̂C2(1), ̂C2(2), ̂C2(3)} (⊃ D2) (40)

T
̂I = {A, D} (⊃ T) (cf. Eq. 9) (41)

The suffix σ̂ is used to refer to ̂C2(1) and so on. The names of the subgroups are
characterized by the symbols with a hat accent. These RS-stereoisomeric groups
are categorized to type I.

5. The nine subgroups of Oh (except those of T, Td , O, and Th) correspond to the
following subgroups of Tdσ̃̂I .

Csσ̃ σ̂ = {I, σ̃d(1), ̂C2(3), σd(6)} (⊃ Cs) (42)

Csσ̃̂I = {I, σ̃d(1), ̂I , σd(1)} (⊃ Cs) (43)

S̃4σ̂ = {I,˜S4(3), C2(3),˜S
3
4(3),

̂C2(1), ̂C2(2), σd(1), σd(6)} (⊃ S̃4, C2v) (44)

S̃4̂I = {I,˜S4(3), C2(3),˜S
3
4(3),

̂I , ̂C2(3), S4(3), S3
4(3)} (⊃ S̃4, S4) (45)

S4σ̃ σ̂ = {I, C2(3), σ̃d(1), σ̃d(6), ̂C2(1), ̂C2(2), S4(3), S3
4(3)} (⊃ S4) (46)

C2vσ̃̂I = {I, C2(3), σ̃d(1), σ̃d(6), ̂I , ̂C2(3), σd(1), σd(6)} (⊃ C2v) (47)

C3vσ̃̂I = {I, C3(1), C2
3(1), σ̃d(1), σ̃d(2), σ̃d(3),

̂I , ̂C3(1), ̂C2
3(1), σd(1), σd(2), σd(3)} (⊃ C3v) (48)

D2dσ̃̂I = {I, C2(1), C2(2), C2(3), σ̃d(1), σ̃d(6),˜S4(3),˜S
3
4(3),

̂I , ̂C2(1), ̂C2(2), ̂C2(3), σd(1), σd(6), S4(3), S3
4(3)} (⊃ D2d) (49)

Tdσ̃̂I = {A, B, C, D} (⊃ Td) (cf. Eq. 5) (50)

The suffix σ̂ is used to refer to ̂C2(1) and so on. The symbol S̃4σ̂ is based on the
subgroup S̃4 in place of C2v . The symbol S̃4̂I is based on the subgroup S̃4 in place
of S4. The names of the subgroups are characterized by the symbols with both a
hat accent and a tilde accent. These RS-stereoisomeric groups are categorized to
type IV.
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According to the data of Fig. 8, Eq. 28 for the point group Oh is converted into a
non-redundant SSG for Tdσ̃̂I :

SSGTdσ̃̂I
=

{

1
C1,

2
C2,

3
Cσ̃ ,

4
Cσ̂ ,

5
Cs,

6
C

̂I ,
7

C3,
8

S̃4,
9

S4,
10
D2,

11
C2σ̃ ,

12
C2σ̂ ,

13
C2v,

14
Csσ̃ σ̂ ,

15
C2̂I ,

16
Csσ̃̂I ,

17
C3σ̃ ,

18
C3v,

19
C3̂I ,

20
D2σ̃ ,

21
S̃4σ̂ ,

22
S̃4̂I ,

23
D2d ,

24
S4σ̃ σ̂ ,

25
D2̂I ,

26
C2vσ̃̂I ,

27
T,

28
C3vσ̃̂I ,

29
D2dσ̃̂I ,

30
Tσ̃ ,

31
T

̂I ,
32
Td ,

33
Tdσ̃̂I

}

, (51)

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 33 are attached to the respective
subgroups.

4 Subduction of coset representations

4.1 Coset representations of Tdσ̃̂I

According to the USCI approach [44], each subgroup Gi appearing in the SSGOh for
the point group Oh (Eq. 28) corresponds to a coset representation Oh(/Gi ) of degree
|Oh |/|Gi |. For example, the four diagonals of the cubane skeleton 2 construct an
orbit, which is governed by the coset representation Oh(/D3d) of degree |Oh |/|D3d |
(= 48/12 = 4). The permutations (products of cycles) of Oh(/D3d) are collected
in Table 1. Note that an overlined permutation (product of cycles) is assigned to a
(roto)reflection operation of Oh .

On the same line, each subgroup Ǵi appearing in the SSGTdσ̃̂I
for the Tdσ̃̂I (Eq.

51) corresponds to a coset representation Tdσ̃̂I (/Ǵi ) of degree |Tdσ̃̂I |/|Ǵi |. Because
Tdσ̃̂I is isomorphic to Oh , the coset representation Tdσ̃̂I (/Ǵi ) consists of an identical
set of products of cycles to that of Oh(/Gi ), if the subgroup Ǵi (⊂ Tdσ̃̂I ) is selected
to be isomorphic to Gi (⊂ Oh).

For example, the four vertices of the tetrahedral skeleton 1 construct an orbit, which
is governed by the coset representation Tdσ̃̂I (/C3vσ̃̂I ) of degree |Tdσ̃̂I |/|C3vσ̃̂I | (=
48/12 = 4). The coset representation Tdσ̃̂I (/C3vσ̃̂I ) consists of the same set of
products of cycles as Oh(/D3d) (Table 1), where C3vσ̃̂I (⊂ Tdσ̃̂I ) is isomorphic to
D3d (⊂ Oh) (cf. Eq. 48).

4.2 Mark table and inverse mark table of Tdσ̃̂I

The coset representations Oh(/Gi ) (Gi ∈ SSGOh ) generate the corresponding mark
table MOh , as reported in Table 1 of [47] and Table 1 of [42]. Because the RS-
stereoisomeric group Tdσ̃̂I is isomorphic to the point group Oh , the mark table of
Tdσ̃̂I represented by the symbol MTdσ̃̂I

can be equalized to the mark table MOh as a
33 × 33 matrix:

MTdσ̃̂I
= MOh (52)
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if the SSGTdσ̃̂I
(Eq. 51) is selected to be related to the SSGOh (Eq. 28). Hence, the

inverse mark table is calculated to be a 33 × 33 matrix:

M−1
Tdσ̃̂I

= M−1
Oh

= (m ji )

=

⎛
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⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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⎜
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⎜

⎜
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⎜

⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/16 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/8 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/16 0 0 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/8 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/48 0 0 0 0 1/24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1/12 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1/8 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1/8 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/24 −1/8 0 0 0 0 0 0 0 1/12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 −1/4 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 −1/4 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 0 −1/4 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 −1/4 −1/4 −1/4 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/8 −1/8 0 −1/8 0 −1/8 0 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 −1/4 0 −1/4 −1/4 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 −1/2 0 0 0 −1/4 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/4 0 0 0 −1/2 0 −1/4 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/12 0 0 0 0 −1/6 −1/4 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 −1/4 0 −1/4 −1/4 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 −1/4 0 0 0 −1/4 −1/4 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 −1/4 −1/4 0 0 0 0 0 −1/4 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 0 −1/4 −1/4 0 0 −1/4 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0

0 1/4 0 0 0 0 0 0 −1/4 0 −1/4 −1/4 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0

−1/6 1/4 0 1/4 0 1/12 0 0 0 −1/12 0 −1/4 0 0 −1/4 0 0 0 0 0 0 0 0 0 1/6 0 0 0 0 0 0 0 0

−1/2 1/4 1/2 1/4 1/2 1/4 0 0 0 0 −1/4 0 −1/4 −1/2 −1/4 −1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0

1/12 0 0 0 0 0 −1/4 0 0 −1/12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0

−1/2 0 1/2 0 1/2 1/2 1/2 0 0 0 0 0 0 0 0 −1 −1/2 −1/2 −1/2 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 1/2 1/2 1/2 1/2 1/2 1/2 0 1/2 0 0 0 0 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 0 0 1 0 0 0 0

−1/4 0 1/2 0 0 0 1/4 0 0 1/4 0 0 0 0 0 0 −1/2 0 0 −1/2 0 0 0 0 0 0 −1/4 0 0 1/2 0 0 0

−1/12 0 0 0 0 1/6 1/4 0 0 1/12 0 0 0 0 0 0 0 0 −1/2 0 0 0 0 0 −1/6 0 −1/4 0 0 0 1/2 0 0

−1/4 0 0 0 1/2 0 1/4 0 0 1/4 0 0 0 0 0 0 0 −1/2 0 0 0 0 −1/2 0 0 0 −1/4 0 0 0 0 1/2 0

1/2 0 −1/2 0 −1/2 −1/2 −1/2 0 0 −1/2 0 0 0 0 0 1 1/2 1/2 1/2 1/2 0 0 1/2 0 1/2 0 1/2 −1 −1 −1/2 −1/2 −1/2 1
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(53)

which has been previously reported (Table 2 of [47] and Table 2 of [42]).
By obeying the procedure of the USCI approach [44], the four vertices of the

tetrahedral skeleton 1 are examined under the respective subgroups of Tdσ̃̂I to give a
fixed-point vector:

FPV1 = (4, 0, 2, 0, 2, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) (54)

which is equal to the mark appearing in the Tdσ̃̂I (/C3vσ̃̂I )-row of the mark table of
Tdσ̃̂I . This is equal to the mark appearing in the Oh(/D3d)-row of the mark table of
Oh (Table 1 of [47] and Table 1 of [42]).

To testify that the orbit for the four vertices of the tetrahedral skeleton 1 is governed
by Tdσ̃̂I (/C3vσ̃̂I )-row, the fixed-point vector (Eq. 54) is multiplied by the inverse mark
table M−1

Tdσ̃̂I
(= M−1

Oh
) shown in Eq. 4.2, so as to give a vector:

FPV1 × M−1
Tdσ̃̂I

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) . (55)

This vector shows the multiplicities of coset representations, so that the value 1 at the
28th position indicates the presence of one coset representation Tdσ̃̂I (/C3vσ̃̂I ), which
corresponds to Oh(/D3d).
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4.3 Subduction and unit subduced cycle indices

4.3.1 Subduction to subgroups of Td related to types III and V

According to the USCI approach [44], each coset representation Oh(/Gi ) is subduced
into a subgroup G j . For example, the coset representation Oh(/D3d) is subduced into
its subgroup G j (∈ SSGOh ), as collected in the subduction-column of Table 2. The
subduction Oh(/D3d) ↓ G j is represented by the sum of coset representations of the
subgroup G j , e.g.,

Oh(/D3d) ↓ C′
s = C′

s(/C1) + 2C′
s(/C′

s) (56)

which appears in the 5th row of Table 2.
According to the formulation of the USCI approach [44], the mark table and its

inverse are further used for the subduction of coset representations: Oh(/Gi ) ↓ G j

(for Gi , G j ∈ SSGOh ). For example, the subduction of Oh(/D3d) into C′
s is conducted

by selecting the values for SSGC′
s

= {

C1, C′
s

}

from the Oh(/D3d)-row of the mark
table (i.e., Eq. 54). Thereby, we obtain the corresponding mark:

MOh(/D3d )↓C′
s
= (4, 2), (57)

which can be regarded as an FPV for the subgroup C′
s . Because the mark table of C′

s
and its inverse are obtained as follows:

MC′
s
=

(

C1 C′
s

C′
s(/C1) 2 0

C′
s(/C′

s) 1 1

)

, M−1
C′

s
=

( 1
2 0

− 1
2 1

)

, (58)

the following multiplication:

MOh(/D3d )↓C′
s
× M−1

C′
s

= (1, 2) (59)

gives the multiplicities of C′
s(/C1) and C′

s(/C′
s), as shown in the 5th row of Table 2.

This result confirms the subduction represented by Eq. 56. This procedure is repeated
to cover all the subgroups contained in SSGOh . Thereby, we obtain the subduction
column of Table 2.

Because each coset representation generated by the subduction is characterized by
a sphericity index (SI), the whole result of the subduction is characterized by a product
of SIs, which is called a unit subduced cycle index with chirality fittingness (USCI-CF)
according to Def. 9.3 of [44]. For example, Eq. 56 (or Eq. 59) means that the subduction
Oh(/D3d) ↓ C′

s is characterized by a USCI-CF, a2
1c2. Similarly, the data collected in

the subduction column of Table 2 provide USCI-CFs collected in the USCI-CF column
of the same table. When sphericities are not taken into consideration, USCIs (without
chirality fittingness) are obtained by putting sd = ad = bd = cd according to Def.
9.2 of [44], as collected in the USCI column of Table 2. By obeying the procedure
exemplified by Table 2, we are able to obtain the full list of the USCI-CFs of Oh ,
which is shown in Tables 4 and 5 of [42].
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Table 2 Subduction of Oh(/D3d )

Subgroup Subduction USCI-CF USCI GEM (cf. Eq. 48 of [42])
(↓ G j

) (

Oh/D3d ↓ G j
)

total
(

N̂ j

)
chiral
(

N̂ (e)
j

)
achiral
(

N̂ (a)
j

)

1 C1 4C1 (/C1) b4
1 s4

1 1/48 1/48 0

2 C2 2C2 (/C1) b2
2 s2

2 1/16 1/16 0

3 C′
2 C′

2 (/C1) + 2C′
2
(

/C′
2
)

b2
1b2 s2

1 s2 1/8 1/8 0

4 Cs 2Cs (/C1) c2
2 s2

2 1/16 −1/16 1/8

5 C′
s C′

s (/C1)+2C′
s
(

/C′
s
)

a2
1c2 s2

1 s2 1/8 −1/8 1/4

6 Ci 4Ci (/Ci ) a4
1 a4

1 1/48 −1/48 1/24

7 C3 C3 (/C1) + C3 (/C3) b1b3 s1s3 1/6 1/6 0

8 C4 C4 (/C1) b4 s4 1/8 1/8 0

9 S4 S4 (/C1) c4 s4 1/8 −1/8 1/4

10 D2 D2 (/C1) b4 s4 0 0 0

11 D′
2 D′

2
(

/C′
2
)

+ D′
2
(

/C′′
2
)

b2
2 s2

2 0 0 0

12 C2v C2v (/C1) c4 s4 0 0 0

13 C′
2v C′

2v (/Cs ) + C′
2v

(

/C′
s
)

a2
2 s2

2 0 0 0

14 C′′
2v C′′

2v

(

/C′
2
) + C′′

2v

(

/C′
s
)

a2c2 s2
2 0 0 0

15 C2h 2C2h (/Ci ) a2
2 s2

2 0 0 0

16 C′
2h C′

2h (/Ci ) + 2C′
2h

(

/C′
2h

)

a2
1a2 s2

1 s2 0 0 0

17 D3 D3 (/C2) + D3 (/D3) b1b3 s1s3 0 0 0

18 C3v C3v (/Cs ) + C3v (/C3v) a1a3 s1s3 0 0 0

19 C3i C3i (/Ci ) + C3i (/C3i ) a1a3 s1s3 1/6 −1/6 1/3

20 D4 D4
(

/C′′
2
)

b4 s4 0 0 0

21 C4v C4v

(

/C′
s
)

a4 s4 0 0 0

22 C4h C4h (/Ci ) a4 s4 0 0 0

23 D2d D2d (/Cs ) a4 s4 0 0 0

24 D′
2d D′

2d

(

/C′
2
)

c4 s4 0 0 0

25 D2h D2h (/Ci ) a4 s4 0 0 0

26 D′
2h D′

2h

(

/C′
2h

) + D′
2h

(

/C′′
2h

)

a2
2 s2

2 0 0 0

27 T T (/C3) b4 s4 0 0 0

28 D3d D3d
(

/C′
2h

) + D3d (/D3d ) a1a3 s1s3 0 0 0

29 D4h D4h
(

/C′
2h

)

a4 s4 0 0 0

30 O O (/D3) b4 s4 0 0 0

31 Th Th (/C3i ) a4 s4 0 0 0

32 Td Td (/C3v) a4 s4 0 0 0

33 Oh Oh (/D3d ) a4 s4 0 0 0

Because the subgroup C′
s of Oh is identical with the subgroup Cs of Tdσ̃̂I , the

subduction shown by Eq. 56 is written as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cs = Cs(/C1) + 2Cs(/Cs) (60)
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which appears in the 5th row of Table 3. Hence the subduction Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cs is
characterized by a USCI-CF, a2

1c2.
The subductions to the subgroups collected in the Td (V)-row of Fig. 8 (i.e.,

Cs, S4, C2v, C3v, D2d , and Td ) and those collected in the T(III)-row (i.e., C1, C2, C3,

D2, and T) can be discussed in a parallel way, so that the corresponding subduction
results and USCI-CFs collected in Table 3 are equivalent to the counterparts collected
in Table 2.

4.3.2 Subduction to subgroups of Tσ̃ related to type II

Let examine subduction to the subgroups of Tσ̃ (⊂ Tdσ̃̂I ), which is isomorphic to
O (⊂ Oh). For example, the subduction of Tdσ̃̂I (/C3vσ̃̂I ) into C3σ̃ is conducted by
selecting the values for

SSGC3σ̃ = {C1, Cσ̃ , C3, C3σ̃ } (61)

from Eq. 54, which appears in the Tdσ̃̂I (/C3vσ̃̂I )-row of the mark table. The first,
third, 7th, and 17th values are selected from Eq. 54 to give the corresponding mark:

MTdσ̃̂I (/C3vσ̃̂I )↓C3σ̃
= (4, 2, 1, 2), (62)

which can be regarded as an FPV for the subgroup C3σ̃ . The mark table of C3σ̃ and
its inverse are obtained as follows:

MC3σ̃ =

⎛

⎜

⎜

⎝

C1 Cσ̃ C3 C3σ̃

C3σ̃ (/C1) 6 0 0 0
C3σ̃ (/Cσ̃ ) 3 1 0 0
C3σ̃ (/C3) 2 0 2 0
C3σ̃ (/C3σ̃ ) 1 1 1 1

⎞

⎟

⎟

⎠

, M−1
C3σ̃

=

⎛

⎜

⎜

⎜

⎜

⎝

1
6 0 0 0

− 1
2 1 0 0

− 1
6 0 1

2 0
1
2 −1 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎠

,

(63)

because C3σ̃ is isomorphic to the point group D3 (cf. Tables A.12 and B.12 of [44]).
Hence, the following multiplication:

MTdσ̃̂I (/C3vσ̃̂I )↓C3σ̃
× M−1

C3σ̃
= (0, 1, 0, 1) (64)

gives the subduction:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ C3σ̃ = C3σ̃ (/Cσ̃ ) + C3σ̃ (/C3σ̃ ), (65)

which is shown at the 17th row of Table 3. Note that the degrees of the respective coset
representations are calculated to be |C3σ̃ |/|Cσ̃ | = 6/2 = 3 and |C3σ̃ |/|C3σ̃ | = 6/6 =
1. Thereby, this subduction gives the USCI-CF b1b3 by considering the sphericities
of the respective coset representations. This behavior corresponds to the subduction
Oh(/D3d) ↓ D3 shown in the 17th row of Table 2.
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Î

(

/
C

Î)
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Î

D
2

Î
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Î)

+
C

2v
σ̃

Î
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The subductions to the subgroups collected in the Tσ̃ (II)-row of Fig. 8 (i.e.,
Cσ̃ , S̃4, C2σ̃ , C3σ̃ , D2σ̃ , and Tσ̃ ) can be discussed in a parallel way, so that the
corresponding subduction results and USCI-CFs collected in Table 3 are equivalent
to the counterparts collected in Table 2.

4.3.3 Subduction to subgroups of T
̂I related to type I

Let examine the subduction to the subgroups of T
̂I (⊂ Tdσ̃̂I ), which is isomorphic to

Th (⊂ Oh). For example, the subduction of Tdσ̃̂I (/C3vσ̃̂I ) into Cσ̂ is conducted by
selecting the values for

SSGCσ̂ = {C1, Cσ̂ } (66)

from Eq. 54, which appears in the Tdσ̃̂I (/C3vσ̃̂I )-row of the mark table. The first and
4th values are selected from Eq. 54 to give the corresponding mark:

MTdσ̃̂I (/C3vσ̃̂I )↓Cσ̂
= (4, 0), (67)

which can be regarded as an FPV for the subgroup Cσ̂ .
The mark table of Cσ̂ and its inverse are obtained as follows:

MCσ̂ =
(

C1 Cσ̂

Cσ̂ (/C1) 2 0
Cσ̂ (/C′

s) 1 1

)

, M−1
Cσ̂

=
(

1
2 0

− 1
2 1

)

, (68)

Hence, the following multiplication:

MTdσ̃̂I (/C3vσ̃̂I )↓Cσ̂
× M−1

Cσ̂
= (2, 0) (69)

gives the multiplicities of Cσ̂ (/C1) and Cσ̂ (/Cσ̂ ). This means that the subduction is
represented as follows:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cσ̂ = 2Cσ̂ (/C1), (70)

where the degree of the coset representation Cσ̂ (/C1) is calculated to be |Cσ̂ |/|C1| =
2/1 = 2. Because the subgroup Cσ̂ is presumed to be achiral and C1 is chiral, this
subduction gives the USCI-CF c2

2 by considering the sphericities of the respective
coset representations, as listed in the 4th row of Table 3. This behavior corresponds
to the subduction Oh(/D3d) ↓ Cs shown in the 4th row of Table 2.

4.3.4 Subduction to remaining subgroups of Tdσ̃̂I related to type IV

Let examine the subduction to the remaining subgroups of Tdσ̃̂I , which are listed in
the Tdσ̃̂I (IV)-row of Fig. 8. For example, the subduction of Tdσ̃̂I (/C3vσ̃̂I ) into the
subgroup Csσ̃ σ̂ (Eq. 42) requires the data of Csσ̃ σ̂ . By considering the isomorphism
between Csσ̃ σ̂ (⊂ Tdσ̃̂I ) and C′′

2v (⊂ Oh), its SSG is found to be
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SSGCsσ̃ σ̂ = {C1, Cσ̃ , Cσ̂ , Cs, Csσ̃ σ̂ } , (71)

the subgroups of which appear in the first, third, 4th, 5th and 14th positions of SSGTdσ̃̂I
(Eq. 51).

According to the USCI approach [44], the mark of this subduction is selected from
Eq. 54, which appears in the Tdσ̃̂I (/C3vσ̃̂I )-row of the mark table. The first, third, 4th,
5th and 14th values are selected from Eq. 54 to give the corresponding mark:

MTdσ̃̂I (/C3vσ̃̂I )↓Csσ̃ σ̂
= (4, 2, 0, 2, 0), (72)

which is regarded as an FPV for the subgroup Csσ̃ σ̂ .
The mark table of Csσ̃ σ̂ and its inverse are obtained as follows:

MCsσ̃ σ̂ =

⎛

⎜

⎜

⎜

⎜

⎝

C1 Cσ̃ Cσ̂ Cs Csσ̃ σ̂

Csσ̃ σ̂ (/C1) 4 0 0 0 0
Csσ̃ σ̂ (/Cσ̃ ) 2 2 0 0 0
Csσ̃ σ̂ (/Cσ̂ ) 2 0 2 0 0
Csσ̃ σ̂ (/Cs) 2 0 0 2 0
Csσ̃ σ̂ (/Csσ̃ σ̂ ) 1 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎠

,

M−1
Csσ̃ σ̂

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
4 0 0 0 0

− 1
4

1
2 0 0 0

− 1
4 0 1

2 0 0

− 1
4 0 0 1

2 0
1
2 − 1

2 − 1
2 − 1

2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (73)

because Csσ̃ σ̂ is isomorphic to the point group C2v (cf. Tables A.5 and B.5 of [44]).
Hence, the following multiplication:

MTdσ̃̂I (/C3vσ̃̂I )↓Csσ̃ σ̂
× M−1

Csσ̃ σ̂
= (0, 1, 0, 1, 0) (74)

gives the subduction:

Tdσ̃̂I (/C3vσ̃̂I ) ↓ Csσ̃ σ̂ = Csσ̃ σ̂ (/Cσ̃ ) + Csσ̃ σ̂ (/Cs), (75)

which is shown at the 14th row of Table 3. This subduction gives the USCI-CF a2c2
by considering the sphericities of the respective coset representations. This behavior
corresponds to the subduction Oh(/D3d) ↓ C′′

2v shown in the 14th row of Table 2.
The subductions to the subgroups collected in the Tdσ̃̂I (IV)-row of Fig. 8. (i.e.,

Csσ̃ σ̂ , Csσ̃̂I , S̃4σ̂ , S̃4̂I , S4σ̃ σ̂ , C2vσ̃̂I , C3vσ̃̂I , D2dσ̃̂I , and Tdσ̃̂I ) can be discussed in
a parallel way, so that the corresponding subduction results and USCI-CFs collected
in Table 3 are equivalent to the counterparts collected in Table 2.
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5 Symmetry-itemized enumeration

5.1 Fixed-point vectors for symmetry-itemized enumeration

A subduced cycle index with chirality fittingness (SCI-CF) defined as a product of
USCI-CFs (Def. 19.3 of [44]) is capable of evaluating the number of fixed promole-
cules as RS-stereoisomers. Such an SCI-CF is identical with the corresponding USCI-
CF (the USCI-CF-column of Fig. 3) in the present enumeration of RS-stereoisomers,
because there exists a single orbit.

Suppose that substituents for the four positions of 1 are selected from an inventory
of proligands:

X = {A, B, X, Y; p, q, r, s; p, q, r, s}, (76)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p,
q/q, r/r, and s/s represent pairs of enantiomeric proligands in isolation. According to
Lemma 19.2 of [44], we use the following ligand-inventory functions:

ad = Ad + Bd + Xd + Yd (77)

cd = Ad + Bd + Xd + Yd + 2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2

(78)

bd = Ad + Bd + Xd + Yd + pd + qd + rd + sd + pd + qd + rd + sd . (79)

It should be noted that the power d/2 appearing in Eq. 78 is an integer because the sub-
script d of cd is always even in the light of the enantiosphericity of the corresponding
orbit. These ligand-inventory functions are introduced into an SCI-CF to give a gen-
erating function, in which the coefficient of the term AaBbXx Yyppppqqqq rr qr ssqs

indicates the number of fixed promolecules to be counted. Because A, B, etc. appear
symmetrically, the term can be represented by the following partition:

[θ ] = [a, b, x, y; p, p, q, q, r, r , s, s], (80)

where we put a ≥ b ≥ x ≥ y, p ≥ p, q ≥ q, r ≥ r , s ≥ s, and p ≥ q ≥ r ≥ s
without losing generality.

For example, let us examine the SCI-CF (USCI-CF) for Tdσ̃̂I (/C3vσ̃̂I ) ↓ Cs , i.e.,
a2

1c2, into which the ligand-inventory functions (Eqs. 77–79) are introduced. The
resulting equation is expanded to give the following generating function:

gCs
= (A + B + X + Y)2(A2 + B2 + X2 + Y2 + 2pp + 2qq + 2rr + 2ss)

= {A4 + B4 + X4 + Y4} + {2A3B + 2A3X + 2 ∗ A3Y + · · · }
+{2A2B2 + 2A2X2 + · · · } + {2A2BX + 2A2BY + · · · }
+{2A2pp + 2A2qq + · · · } + {4ABpp + 4ABqq + · · · } (81)
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Among these terms, for example, we focus our attention on A4 (as a representative of
the first pair of braces) and 2A3B (as a representative of the second pair of braces). The
coefficient 1 of A4 means that one promolecule with the formula A4 or the partition:

[θ ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (82)

is fixed under the action of Cs . The coefficient 2 of A3B means that two promolecule
with the formula A3B or the partition:

[θ ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (83)

are fixed under the action of Cs . These results are symbolically represented as follows:

ρ[θ]1Cs = 1 (84)

ρ[θ]2Cs = 2 (85)

This procedure is repeated to cover all the subgroups contained in SSGTdσ̃̂I
(Eq. 51).

Thereby, we obtain ρ[θ]1Ǵ j
for Ǵ j (∈ SSGTdσ̃̂I

), which are collected so as to give an
FPV for symmetry-itemized enumeration for the partition [θ ]1:

FPV[θ]1

= (ρ[θ]1C1 , . . . , ρ[θ]1Cs , . . . , ρ[θ]1Ǵ j
, . . . , ρ[θ]1Tdσ̃̂I

)

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1). (86)

Similarly, another FPV for symmetry-itemized enumeration for the partition [θ ]2 is
obtained:

FPV[θ]2

= (ρ[θ]2C1 , . . . , ρ[θ]2Cs , . . . , ρ[θ]2Ǵ j
, . . . , ρ[θ]2Tdσ̃̂I

)

= (4, 0, 2, 0, 2, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0). (87)

Note that the values ρ[θ]1Cs (Eq. 84) and ρ[θ]2Cs (Eq. 85) appear at the 5th positions
of the respective FPVs (Eqs. 86 and 87).

According to Theorem 19.4 (coupled with Theorem 15.4) in [44], the FPVs are
multiplied by the inverse M−1

Tdσ̃̂I
(Eq. 4.2) to give the following isomer-counting vectors

(ICVs):
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ICV[θ]1 = FPV[θ]1 × M−1
Tdσ̃̂I

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 1), (88)

ICV[θ]2 = FPV[θ]2 × M−1
Tdσ̃̂I

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0). (89)

By referring to SSGTdσ̃̂I
(Eq. 51), Eq. 88 indicates that one promolecule (a quadruplet)

as an RS-stereoisomer with [θ ]1 (A4 etc.) exists to belong to Tdσ̃̂I , while Eq. 89
indicates that one promolecule (a quadruplet) as an RS-stereoisomer with [θ ]2 (A3B
etc.) exists to belong to C3vσ̃̂I .

5.2 Fixed-point matrices for symmetry-itemized enumeration

For the purpose of systematic enumeration, several FPVs can be collected as row
vectors of a matrix, which is called a fixed-point matrix (FPM) according to Sections
15.2 and 19.2 of [44]. For example, such an FPM as corresponding to the following
partitions:

[θ ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A4 etc.) (90)

[θ ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A3B etc.) (91)

[θ ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] (for A3p etc.) (92)

[θ ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A2B2 etc.) (93)

[θ ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] (for A2p2 etc.) (94)

[θ ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] (for A2BX etc.) (95)

[θ ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] (for A2 Bp etc.) (96)

[θ ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] (for A2pp etc.) (97)

[θ ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] (for A2pq etc.) (98)

[θ ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] (for ABXY) (99)

[θ ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] (for ABXp etc.) (100)

[θ ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] (for ABp2 etc.) (101)

[θ ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] (for ABpp etc.) (102)

[θ ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] (for ABpq etc.) (103)

[θ ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] (for Ap3 etc.) (104)

[θ ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] (for Ap2p etc.) (105)

[θ ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] (for Ap2q etc.) (106)

[θ ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] (for Appq etc.) (107)

[θ ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] (for Apqr etc.) (108)
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can be constructed from the data of generating functions (e.g., Eq. 81) by applying the
procedure described above (cf. Eqs. 86 and 87 for obtaining FPV[θ]1 and FPV[θ]2 ).
Thereby, we obtain the following FPM:

FPM1

=

[θ ]1

[θ ]2

[θ ]3

[θ ]4

[θ ]5

[θ ]6

[θ ]7

[θ ]8

[θ ]9

[θ ]10

[θ ]11

[θ ]12

[θ ]13

[θ ]14

[θ ]15

[θ ]16

[θ ]17

[θ ]18

[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 2 0 2 4 1 0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

4 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 2 2 2 2 6 0 0 0 0 2 0 2 2 2 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

6 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 2 12 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 4 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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where the values collected in each column appear as the coefficients of the terms
which correspond to the partitions [θ ]i (i = 1–19), appearing in the generating
function of the RS-stereoisomeric group of the column. Thus, the coefficients of
respective terms in the generating function gCs (Eq. 81) appear in the Cs-column
(the 5th column) of the FPM1 (Eq. 109), where non-zero values appear in the [θ ]1-row
(for A4 etc.), the [θ ]2-row (for A3B etc.), the [θ ]4-row (for A2B2 etc.), the [θ ]6-
row (for A2BX etc.), the [θ ]8-row (for A2p p etc.), and the [θ ]13-row (for ABpp
etc.).

Because the FPM (Eq. 109) contains FPVs as its row vectors, it is multiplied by
the inverse M−1

Tdσ̃̂I
(Eq. 4.2), so as to give an isomer-counting matrix (ICM1):
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ICM1 = FPM1 × M−1
Tdσ̃̂I

=

[θ]1
[θ]2
[θ]3
[θ]4
[θ]5
[θ]6
[θ]7
[θ]8
[θ]9
[θ]10
[θ]11
[θ]12
[θ]13
[θ]14
[θ]15
[θ]16
[θ]17
[θ]18
[θ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟
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⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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The ICM1 contains the resulting ICVs as its row vectors, so that the [θ ]1- and the
[θ ]2-rows are identical with the vectors shown in Eqs. 88 and 89.

The value 1
2 at the intersection between the [θ ]3-row and C3σ̃ -column (the 17th

column) in the ICM1 (Eq. 110) corresponds to the term 1
2 (A3p+A3p), which indicates

that an enantiomeric pair is counted once.
For an additional example, let us consider an FPM corresponding to the following

partitions:

[θ ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] (for p4 etc.) (111)

[θ ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] (for p3p etc.) (112)

[θ ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] (for p3q etc.) (113)

[θ ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] (for p2p2 etc.) (114)

[θ ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] (for p2pq etc.) (115)

[θ ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] (for p2q2 etc.) (116)

[θ ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] (for p2qq etc.) (117)

[θ ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] (for p2qr etc.) (118)

[θ ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] (for ppqq etc.) (119)

[θ ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] (for ppqr etc.) (120)

[θ ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] (for pqrs etc.) (121)

The FPM can be constructed from the data of generating functions (e.g., Eq. 81) by
applying the procedure described above:
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FPM2

=

[θ ]20

[θ ]21

[θ ]22

[θ ]23

[θ ]24

[θ ]25

[θ ]26

[θ ]27

[θ ]28

[θ ]29

[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0

4 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 2 2 4 0 0 0 0 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎠
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The FPM (Eq. 53) is multiplied by M−1
Tdσ̃̂I

(Eq. 4.2), so as to give another isomer-
counting matrix (ICM2):

ICM2 = FPM2 × M−1
Tdσ̃̂I

=

[θ ]20

[θ ]21

[θ ]22

[θ ]23

[θ ]24

[θ ]25

[θ ]26

[θ ]27

[θ ]28

[θ ]29

[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎠
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The results of the itemized enumeration (Eqs. 110 and 123) are illustrated in Fig. 9,
which is a modification of Fig. 3 of [41]. Each promolecule (as a representative of a
quadruplet for a stereoisogram) is selected to be a representative of promolecules
(representatives of quadruplets) with a given partition and accompanied with the
information on its RS-stereoisomeric group, its point group, and its stereoisogram
type. For example, the promolecule 16 with ABXY is a representative of the partition
[θ ]10, which is characterized by the RS-stereoisomeric group C

̂I , the point group C1,
and a type-I stereoisogram. Note that each promolecule corresponds to a respective
stereoisogram (cf. Fig. 2 of [41]). The categorization of RS-stereoisomeric groups to
stereoisogram types are summarized in Fig. 8.
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Fig. 9 Quadruplets of RS-Stereoisomers (Types I–V) for tetrahedral promolecules. The symbols A, B, X,
and Y represent atoms or achiral ligands. The symbols p, q, r, and s represents chiral ligands, while each
symbol with an overbar represents the corresponding chiral ligand with the opposite chirality. An arbitrary
promolecule is depicted as a representative of each quadruplet of RS-stereoisomers. The compound number
(its partition), its RS-stereoisomeric group, its point group, and its stereoisogram type are attached to each
promolecule
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6 Type-itemized enumeration

6.1 Type-enumeration matrices

As shown in Fig. 8, the 33 subgroups of the RS-stereoisomeric group Tdσ̃̂I are cate-
gorized into five types represented by the following sets:

Type I: SG[I] = { 4
Cσ̂ ,

6
C

̂I ,
12

C2σ̂ ,
15

C2̂I ,
19

C3̂I ,
25

D2̂I ,
31
T

̂I } (124)

Type II: SG[II] = { 3
Cσ̃ ,

8
S̃4,

11
C2σ̃ ,

17
C3σ̃ ,

20
D2σ̃ ,

30
Tσ̃ } (125)

Type III: SG[III] = { 1
C1,

2
C2,

7
C3,

10
D2,

27
T} (126)

Type IV: SG[IV] = { 14
Csσ̃ σ̂ ,

16
Csσ̃̂I ,

21
S̃4σ̂ ,

22
S̃4̂I ,

24
S4σ̃ σ̂ ,

26
C2vσ̃̂I ,

28
C3vσ̃̂I ,

29
D2dσ̃̂I ,

33
Tdσ̃̂I }

(127)

Type V: SG[V] = { 5
Cs,

9
S4,

13
C2v,

18
C3v,

23
D2d ,

32
Td}. (128)

Each of the tetrahedral promolecules collected in Fig. 9 is a representative (A, A, B, or
B) of a quadruplet which constructs a stereoisogram shown in Fig. 10. The subgroups
of Tdσ̃̂I for characterizing respective types are shown along with three attributes. For
the three attributes and the related three relationships, see [17] and [41].

Let m ji be the j i-element of the inverse mark table M−1
Tdσ̃̂I

(Eq. 4.2). The Ǵ j -row
is tentatively fixed and the row is summed up according to the categorization of type
I–V as follows:

̂N (I )
j =

∑

Ǵi ∈SG[I]
m ji (129)

̂N (I I )
j =

∑

Ǵi ∈SG[II]
m ji (130)

̂N (I I I )
j =

∑

Ǵi ∈SG[III]
m ji (131)

̂N (I V )
j =

∑

Ǵi ∈SG[IV]
m ji (132)

̂N (V )
j =

∑

Ǵi ∈SG[V]
m ji (133)

̂N j = ̂N (I )
j + ̂N (I I )

j + ̂N (I I I )
j + ̂N (I V )

j + ̂N (V )
j (134)

In a parallel way to a gross-enumeration matrix GEM for gross enumerations [cf. Table
2 of the present paper and Eq. 48 of [42]], let us consider a 33 × 6 type-enumeration
matrix TEM for type-itemized enumerations, where the j th row (TEM j ) as a row
vector is represented as follows:
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Fig. 10 Stereoisograms for representing RS-stereoisomers of five types. This figure is a modification of
Fig. 6 of [17] and of Fig. 6 of [41], where the subgroups of Tdσ̃̂I for characterizing respective types are

shown along with three attributes. The symbols A and A (or B and B) represent a pair of enantiomers based
on a tetrahedral skeleton, where the A at the upper-left position of each stereoisogram is selected from the
promolecules listed in Fig. 9

TEM j =
(

̂N j , ̂N (I )
j , ̂N (I I )

j , ̂N (I I I )
j , ̂N (I V )

j , ̂N (V )
j

)

(135)

for Ǵ j (∈ SSGTdσ̃̂I
) (cf. Eq. 51). The respective elements of TEM j are collected in

Table 3. The elements of TEM j are consistent with the coefficients appearing in the
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cycle indices with chirality fittingness (CI-CFs) reported previously [i.e., Eqs. 83 (for
type I), 84 (for type II), 85 (for type III), 81 (for type IV), and 82 (for type V) of [41]],
which were obtained by an alternative way.

Because the FPM1 (Eq. 109) contains FPVs as its row vectors, it is multiplied
by the TEM (Eq. 135 and Table 3) so as to give an isomer-type-counting matrix
(ITCM), where the six columns contain the numbers of total quadruplets and those of
quadruplets of the respective types.

ITCM1 = FPM1 × TEM =

[θ ]1

[θ ]2

[θ ]3

[θ ]4

[θ ]5

[θ ]6

[θ ]7

[θ ]8

[θ ]9

[θ ]10

[θ ]11

[θ ]12

[θ ]13

[θ ]14

[θ ]15

[θ ]16

[θ ]17

[θ ]18

[θ ]19

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 0

1 0 0 0 1 0

1/2 0 1/2 0 0 0

1 0 0 0 1 0

1/2 0 1/2 0 0 0

1 0 0 0 1 0

1/2 0 1/2 0 0 0

1 0 0 0 1 0

1/2 0 1/2 0 0 0

1 1 0 0 0 0

1/2 0 0 1/2 0 0

1/2 0 1/2 0 0 0

1 0 0 0 0 1

1/2 0 0 1/2 0 0

1/2 0 1/2 0 0 0

1/2 0 1/2 0 0 0

1/2 0 1/2 0 0 0

1/2 0 0 1/2 0 0

1/2 0 0 1/2 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(136)

These values are consistent with the quadruplets listed in Fig. 9. For example, the
value 1/2 at the intersection of the [θ ]3-row and the third column (the type-II column)
in Eq. 136 corresponds to the term 1

2 (A3p + A3p). This term indicates the presence
of a quadruplet of RS-stereoisomers (as a pair of enantiomers) with the partition [θ ]3,
where the C3σ̃ -promolecule 19 is a representative of the quadruplet characterized by
the type-II stereoisogram shown in Fig. 10.

In a similar way, the FPM2 (Eq. 122) contains FPVs as its row vectors. The matrix
is multiplied by the TEM (Eq. 135 and Table 3) so as to give an isomer-type-counting
matrix (ITCM), where the six columns contain the numbers of total quadruplets and
of quadruplets of respective types.
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ITCM2 = FPM2 × TEM =

[θ ]20
[θ ]21
[θ ]22
[θ ]23
[θ ]24
[θ ]25
[θ ]26
[θ ]27
[θ ]28
[θ ]29
[θ ]30

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
1 0 0 0 1 0
1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
1/2 0 1/2 0 0 0
1 1 0 0 0 0
1/2 0 0 1/2 0 0
1/2 0 0 1/2 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(137)

These values are consistent with the quadruplets listed in Fig. 9. In addition, the values
calculated in Eqs. 136 and 137 are consistent with the previous results calculated by an
alternative method [41]: the second columns of Eqs. 136 and 137 (type I) is consistent
with Eq. 86 of [41], the third columns (type II) with Eq. 87 of [41], the 4th columns
(type III) with Eq. 88 of [41], the 5th columns (type IV) with Eq. 89 of [41], and the
6th columns (type V) with Eq. 90 of [41].

7 Conclusion

After the isomorphism between the RS-stereoisomeric group Tdσ̃̂I and the point group
Oh has been throughly discussed, unit-subduced cycle indices with chirality fittingness
(USCI-CFs) for characterizing Tdσ̃̂I are obtained according to the USCI approach
developed by Fujita [44]. Then, the fixed-point matrix (FPM) method of the USCI
approach is applied to the USCI-CFs. Thereby, the numbers of quadruplets are calcu-
lated in an itemized fashion with respect to the subgroups of Tdσ̃̂I . After the subgroups
of Tdσ̃̂I are categorized into types I–V, type-itemized enumeration of quadruplets is
conducted to illustrate the versatility of the stereoisogram approach.
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